

# JDAT



Journal of The Dental Association of Thailand

Volume 76 Number 1 January - March 2026

[www.jdat.org](http://www.jdat.org)

ISSN 2730-4280



The 13<sup>th</sup> Annual Scientific Meeting of the Royal College of Dental Surgeons of Thailand



วิทยาสารทันตแพทยศาสตร์  
ปีที่ 76 ฉบับที่ 1 มกราคม - มีนาคม 2569 | e-ISSN 2730-4280

# ทันตแพทยสมาคมแห่งประเทศไทย ในพระบรมราชูปถัมภ์

## THE DENTAL ASSOCIATION OF THAILAND

### Advisory Board

|                          |              |
|--------------------------|--------------|
| Asst. Prof. Anonknart    | Bhakdinaronk |
| Dr. Charmary             | Reanamporn   |
| Assoc. Prof. Porjai      | Ruangsri     |
| Lt. Gen. Nawarut         | Soonthornwit |
| Dr. Werawat              | Satayanurug  |
| Assoc. Prof. Wacharaporn | Tasachan     |
| Dr. Anuchar              | Jitjaturunt  |
| Dr. Prinya               | Pathomkulmai |

### Board of Directors 2025 - 2027

|                                                          |                             |                     |
|----------------------------------------------------------|-----------------------------|---------------------|
| President                                                | Assoc. Prof. Dr. Sirivimol  | Srisawasdi          |
| President Elect                                          | Dr. Adirek                  | Sriwatanawongsa     |
| 1 <sup>st</sup> Vice-President                           | Assoc. Prof. Dr. Nirada     | Dhanesuan           |
| 2 <sup>nd</sup> Vice-President                           | Asst. Prof. Dr. Sutee       | Suksudaj            |
| Treasurer                                                | Assoc. Prof. Poranee        | Berananda           |
| Secretary General                                        | Dr. Chavalit                | Karnjanaopaswong    |
| Deputy Secretary General and<br>National Liaison Officer | Lt. Col. Thanasak           | Thumbuntu           |
| Chairman of the Foreign Affairs Committee                | Asst. Prof. Ekachai         | Chunhacheevachaloke |
| Editor                                                   | Dr. Ekamon                  | Mahapoka            |
| Executive Committee                                      | Clinical Prof. Pusadee      | Yotnuengnit         |
|                                                          | Assist. Prof. Suchit        | Poolthong           |
|                                                          | Clinical Prof. Dr. Sirichai | Kiattavorncharoen   |
|                                                          | Clinical Prof. Dr. Siriruk  | Nakornchai          |
|                                                          | Asst. Prof. Piriya          | Cherdsatirakul      |
|                                                          | Dr. Terdsak                 | Utasri              |
|                                                          | Prof. Dr. Thanaphum         | Osathanon           |
|                                                          | Dr. Thornkanok              | Pruksamas           |
|                                                          | Asst. Prof. Taksid          | Charasseangpaisarn  |
|                                                          | Dr. Adisa                   | Suthirathikul       |

# วิทยาสารทันตแพทยศาสตร์

## JOURNAL OF THE DENTAL ASSOCIATION OF THAILAND

**Advisory Board** Assoc. Prof. Porjai Ruangsri  
Assoc. Prof. Dr. Patita Bhuridej Assist. Prof. Phanomporn Vanichanon  
Prof. Dr. Teerasak Damrongrungruang

**Editor** Dr. Ekamon Mahapoka

**Associate Editors** Prof. Dr. Waranun Buajeeb  
Assoc. Prof. Dr. Siriruk Nakornchai  
Assoc. Prof. Dr. Nirada Dhanesuan

### Editorial Board

|                                          |                                                          |
|------------------------------------------|----------------------------------------------------------|
| Assoc. Prof. Dr. Chaiwat Maneenut        | (Chulalongkorn University, Thailand)                     |
| Assist. Prof. Dr. Yaowaluk Ngoenwiwatkul | (Mahidol University, Thailand)                           |
| Prof. Dr. Anak Iamaroon                  | (Chiang Mai University, Thailand)                        |
| Assist. Prof. Dr. Lertrit Sarinnaphakorn | (Chulalongkorn University, Thailand)                     |
| Prof. Dr. Suttichai Krisanaprakornkit    | (Chiang Mai University, Thailand)                        |
| Assoc. Prof. Dr. Somsak Mitirattanaku    | (Mahidol University, Thailand)                           |
| Assist. Prof. Dr. Ichaya Yiemwattana     | (Naresuan University, Thailand)                          |
| Prof. Boonlert Kukiatrakoon              | (Prince of Songkla University, Thailand)                 |
| Assist. Prof. Dr. Choottima Ratisoontorn | (Chulalongkorn University, Thailand)                     |
| Assoc. Prof. Dr. Oranat Matungkasombut   | (Chulalongkorn University, Thailand)                     |
| Assist. Prof. Dr. Napapa Aimjirakul      | (Srinakharinwirot University, Thailand)                  |
| Assist. Prof. Dr. Vanthana Sattabanasuk  | (Royal College of Dental Surgeons, Thailand)             |
| Assist. Prof. Dr. Suthee Suksudaj        | (Thammasat University, Thailand)                         |
| Assoc. Prof. Kajorn Kungsadalpipob       | (Chulalongkorn University, Thailand)                     |
| Assoc. Prof. Dr. Supatchai Boonpratham   | (Mahidol University, Thailand)                           |
| Dr. Jaruma Sakdee                        | (Srinakharinwirot University, Thailand)                  |
| Assist. Prof. Dr. Aroonwan Lam-ubol      | (Srinakharinwirot University, Thailand)                  |
| Prof. Dr. Thantrira Porntaveetus         | (Chulalongkorn University, Thailand)                     |
| Assoc. Prof. Pintu-On Chantarawaratit    | (Chulalongkorn University, Thailand)                     |
| Assoc. Prof. Wannakorn Sriarj            | (Chulalongkorn University, Thailand)                     |
| Assist. Prof. Dr. Pisha Pittayapat       | (Chulalongkorn University, Thailand)                     |
| Prof. Dr. Antheunis Versluis             | (The University of Tennessee Health Science Center, USA) |
| Assoc. Prof. Dr. Hiroshi Ogawa           | (Niigata University, JAPAN)                              |
| Assoc. Prof. Dr. Anwar Merchant          | (University of South Carolina, USA)                      |
| Dr. Brian Foster                         | (NIAMS/NIH, USA)                                         |
| Dr. Ahmed Abbas Mohamed                  | (University of Warwick, UK)                              |

**Editorial Staff** Pimpanid Laomana  
Anyamanee Kongcheepa

**Manage** Assoc. Prof. Poranee Berananda  
Journal published trimonthly. Foreign subscription rate US\$ 200 including postage.  
Publisher and artwork: Rungsilp Printing Co., Ltd  
Please send manuscripts to Dr. Ekamon Mahapoka

**Address:** 71 Ladprao 95 Wangtonglang, Bangkok 10310, Thailand E-mail: [jdateditor@thaidental.or.th](mailto:jdateditor@thaidental.or.th)

# วิทยาสารทันตแพทยศาสตร์

## JOURNAL OF THE DENTAL ASSOCIATION OF THAILAND

### จดหมายสารา

#### สวัสดีครับพนักงานทันตแพทย์ร่วมวิชาชีพทุกท่าน

ในวาระปีใหม่ ผู้ขอส่งความระลึกถึงและความปรารถนาดีมายังทุกท่าน ปีที่ผ่านมาเป็นปีที่หลายภาคส่วนของประเทศไทยต้องปรับตัวอย่างต่อเนื่อง ทั้งต่อภาวะเศรษฐกิจ ภัยทางธรรมชาติ และความท้าทายด้านสุขภาพของประชาชน แต่ท่ามกลางความเปลี่ยนแปลงเหล่านั้น ผู้ขอเชิญชวนความเข้มแข็งและความทุ่มเทของทุกท่านที่ยังคงร่วมกันพัฒนาวิชาชีพทันตแพทย์ของไทยให้ก้าวหน้าต่อไปอย่างมีที่ดึง

วิทยาสารทันตแพทยศาสตร์ ยังคงยืนอยู่บนเป้าหมายเดิม คือการเป็นพื้นที่เผยแพร่องค์ความรู้ด้านภาพสูง เพื่อสนับสนุนงานวิชาการ งานวิจัย และการพัฒนาการดูแลผู้ป่วยในทุกสาขา ผู้ขอขอบคุณผู้นิพนธ์ทุกท่านที่มอบความไว้วางใจส่งผลงานมาเผยแพร่รวมถึงอาจารย์ผู้ทรงคุณวุฒิทุกท่านที่ช่วยตรวจสอบคุณภาพของบทความอย่างรอบคอบ ทำให้วิทยาสารฯ ของเรายังคงมានมาตรฐานที่น่าเชื่อถือและเดิบโตเข้มทุกปี

ในปี 2569 นี้ กองบรรณาธิการของเรามีแผนพัฒนากระบวนการพิจารณาบทความให้มีความคล่องตัวและโปร่งใสมากยิ่งขึ้น พร้อมส่งเสริมงานวิจัยทางคลินิก งานวิจัยประยุกต์ รวมถึงงานทบทวนองค์ความรู้ที่ตอบโจทย์สถานการณ์ด้านสุขภาพของภาคของประเทศไทยในยุคปัจจุบัน

จึงขอเรียนเชิญทุกท่านร่วมส่งบทความในสาขาที่ท่านสนใจ ไม่ว่าจะเป็นงานวิจัย บทความทบทวน หรือรายงานผู้ป่วย เพื่อร่วมกันสร้างฐานความรู้และยกระดับมาตรฐานวิชาการด้านทันตแพทยศาสตร์ของไทยให้ก้าวหน้าไปพร้อมกัน ผลงานของท่านคือพลังสำคัญที่ทำให้วิทยาสารฯ ยังคงเป็นประโยชน์ต่อวงการทันตแพทย์และประชาชนอย่างแท้จริง

ท้ายนี้ ขอวยพรให้ปีใหม่ 2569 เป็นปีแห่งความสงบสุข ความมั่นคง และความสำเร็จของทุกท่าน ขอให้ทุกท่านมีสุขภาพแข็งแรงและก้าวผ่านทุกความท้าทายไปได้อย่างดงามครับ

ขอบคุณและสวัสดี  
พ.ดร. เอกมน มหาโภค  
สารานุจักร

## Instruction for Authors

The Journal of the Dental Association of Thailand (*J DENT ASSOC THAI*) supported by the Dental Association of Thailand, is an online open access and peer-reviewed journal. The journal welcomes for submission on the field of Dentistry and related dental science. We publish 4 issues per year in January, April, July and October.

### » Categories of the Articles «

**1. Review Articles:** a comprehensive article with technical knowledge collected from journals and/or textbooks which is profoundly criticized or analyzed, or tutorial with the scientific writing.

**2. Case Reports:** a clinically report of an update or rare case or case series related to dental field which has been carefully analyzed and criticized with scientific observation.

**3. Original Articles:** a research report which has never been published elsewhere and represent new significant contributions, investigations or observations, with appropriate experimental design and statistical analysis in the field of dentistry.

### » Manuscript Submission «

The Journal of the Dental Association of Thailand welcome submissions from the field of dentistry and related dental science through only online submission. The manuscript must be submitted via <http://www.jdat.org>. Registration by corresponding author is once required for the article's submission. We accept articles written in both English and Thai. However, for Thai article, English abstract is required whereas for English article, there is no need for Thai abstract submission. The main manuscript should be submitted as .doc (word97-2003). All figures, and tables should be submitted as separated files (1 file for each figure or table). For the acceptable file formats and resolution of image will be mentioned in 8. of manuscript preparation section.

### » Scope of Article «

Journal of Dental association of Thailand (JDAT) is a quarterly peer-reviewed scientific dental journal aims to the dissemination and publication of new knowledges and researches including all field of dentistry and related dental sciences

### » Manuscript Preparation «

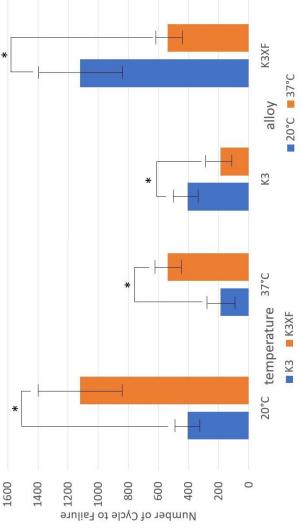
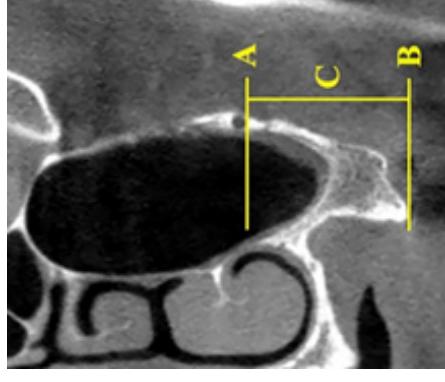
1. For English article, use font to TH Sarabun New Style size 14 in a standard A4 paper (21.2 x 29.7 cm) with 2.5 cm margin on a four sides. The manuscript should be typewritten.

2. For Thai article, use font of TH Sarabun New Style size 14 in a standard A4 paper (21.2 x 29.7 cm) with 2.5 cm margin on a four sides. The manuscript should be typewritten

with 1.5 line spacing. Thai article must also provide English abstract. All reference must be in English. For the article written in Thai, please visit the Royal Institute of Thailand (<http://www.royin.go.th>) for the assigned Thai medical and technical terms. The original English words must be put in the parenthesis mentioned at the first time.

3. Numbers of page must be placed on the top right corner. The length of article should be 10-12 pages including the maximum of 5 figures, 5 tables and 40 references for original articles. (The numbers of references are not limited for review article).

4. Measurement units such as length, height, weight, capacity etc. should be in metric units. Temperature should be in degree Celsius. Pressure units should be in mmHg. The hematologic measurement and clinical chemistry should follow International System Units or SI.



5. Standard abbreviation must be used for abbreviation and symbols. The abbreviation should not be used in the title and abstract. Full words of the abbreviation should be referred at the end of the first abbreviation in the content except the standard measurement units.

6. Position of the teeth may use full proper name such as maxillary right canine of symbols according to FDI two-digit notation and write full name in the parenthesis after the first mention such as tooth 31 (mandibular left central incisor)

7. Table: should be typed on separate sheets and number consecutively with the Arabic numbers. Table should self-explanatory and include a brief descriptive title. Footnotes to tables indicated by lower-case superscript letters are acceptable.

8. Figure : the photographs and figures must be clearly illustrated with legend and must have a high resolution and acceptable file types to meet technical evaluation of JDAT that is adapted from file submissions specifications of Pubmed (<https://www.ncbi.nlm.nih.gov/pmc/pub/filespec-images/#int-disp>). We classify type of figure as 3 types following: line art, halftones and combo (line art and halftone combinations) The details of description, required format, color mode and resolution requirement are given in table below.

Numbers, letters and symbols must be clear and even throughout which used in Arabic form and limited as necessary. During the submission process, all photos and tables must be submitted in the separate files. Once the manuscript is accepted, an author may be requested to resubmit the high quality photos.

| Image type | Description                                                                                 | Example                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Recommended format | Color mode      | Resolution                            |    |      |     |    |      |     |      |      |      |      |      |     |              |                         |              |
|------------|---------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------------|---------------------------------------|----|------|-----|----|------|-----|------|------|------|------|------|-----|--------------|-------------------------|--------------|
| Line art   | An image which is composed of line and text and is not contained of tonal or shading areas. |  <table border="1"> <caption>Data from Bar Chart: Number of Cycles to Failure</caption> <thead> <tr> <th>Material</th> <th>Temperature</th> <th>Number of Cycles to Failure (approx.)</th> </tr> </thead> <tbody> <tr> <td>K3</td> <td>20°C</td> <td>200</td> </tr> <tr> <td>K3</td> <td>37°C</td> <td>400</td> </tr> <tr> <td>K3XF</td> <td>20°C</td> <td>1000</td> </tr> <tr> <td>K3XF</td> <td>37°C</td> <td>600</td> </tr> </tbody> </table> | Material           | Temperature     | Number of Cycles to Failure (approx.) | K3 | 20°C | 200 | K3 | 37°C | 400 | K3XF | 20°C | 1000 | K3XF | 37°C | 600 | tif. of eps. | Monochrome 1-bit of RGB | 900-1200 dpi |
| Material   | Temperature                                                                                 | Number of Cycles to Failure (approx.)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                    |                 |                                       |    |      |     |    |      |     |      |      |      |      |      |     |              |                         |              |
| K3         | 20°C                                                                                        | 200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                 |                                       |    |      |     |    |      |     |      |      |      |      |      |     |              |                         |              |
| K3         | 37°C                                                                                        | 400                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                 |                                       |    |      |     |    |      |     |      |      |      |      |      |     |              |                         |              |
| K3XF       | 20°C                                                                                        | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                    |                 |                                       |    |      |     |    |      |     |      |      |      |      |      |     |              |                         |              |
| K3XF       | 37°C                                                                                        | 600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                    |                 |                                       |    |      |     |    |      |     |      |      |      |      |      |     |              |                         |              |
| Half tone  | A continuous tone photograph which does not compose of text.                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                 | tif.               | RGB of Graycale | 300 dpi                               |    |      |     |    |      |     |      |      |      |      |      |     |              |                         |              |
| Combo      | Combination of line art and half tone.                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                | tif. of eps.       | RGB of Graycale | 500-900 dpi                           |    |      |     |    |      |     |      |      |      |      |      |     |              |                         |              |

# Journal of The Dental Association of Thailand

## » Contact Address «

### Editorial Staff of JDAT

The Dental Association of Thailand

71 Ladprao 95, Wangtonglang, Bangkok 10310, Thailand.

Email: [jdateditor@thaidental.or.th](mailto:jdateditor@thaidental.or.th) Tel: +669-7007-0341

## » Preparation of the Research Articles «

### 1. Title Page

The first page of the article should contain the following information

- Category of the manuscript
- Article title
- Authors' names and affiliated institutions
- Author's details (name, mailing address, E-mail, telephone and FAX number)

### 2. Abstract

The abstract must be typed in only paragraph. Only English abstract is required for English article. Both English and Thai abstract are required for Thai article and put in separate pages. The abstract should contain title, objectives, methods, results and conclusion continuously without heading on each section. Do not refer any documents, illustrations or tables in the abstract. The teeth must be written by its proper name not by symbol. Do not use English words in Thai abstract but translate or transliterate it into Thai words and do not put the original words in the parenthesis. English abstract must not exceed 300 words. Key words (3-5 words) are written at the end of the abstract in alphabetical order with comma (,) in-between.

### 3. Text

The text of the original articles should be organized in section as follows

**- Introduction:** indicates reasons or importances of the research, objectives, scope of the study. Introduction should review new documents in order to show the correlation of the contents in the article and original knowledge. It must also clearly indicate the hypothesis.

**- Materials and Methods:** indicate details of materials and methods used in the study for readers to be able to repeat such as chemical product names, types of experimental animals, details of patients including sources, sex, age etc. It must also indicate name, type, specification, and other information of materials for each method. For a research report performed in human subjects, human material samples, human participants and animal samples, authors should indicate that the study was performed according to the Experiment involving human or animal subjects such as Declaration of Helsinki 2000, available at: <https://www.wma.net/what-we-do/medical-ethics/declaration-of-helsinki/doh-oct2000/>, or has been approved by

the ethic committees of each institute (\*ethic number is required).

**- Results:** Results are presentation of the discovery of experiment or researches. It should be categorized and related to the objectives of the articles. The results can be presented in various forms such as words, tables, graphs of illustrations etc. Avoid repeating the results both in tables and in paragraph =. Emphasize only important issues.

**- Discussion:** The topics to be discussed include the objectives of the study, advantages and disadvantages of materials and methods. However, the important points to be especially considered are the experimental results compared directly with the concerned experimental study. It should indicate the new discovery and/or important issues including the conclusion from the study. New suggestion problems and informed in the discussion and indicate the ways to make good use of the results.

**- Conclusion:** indicates the brief results and the conclusion of the analysis.

**- Acknowledge:** indicates the institute or persons helping the authors, especially on capital sources of researches and numbers of research funds (if any).

**- Conflicts of interest :** for the transparency and helping the reviewers assess any potential bias. JDAT requires all authors to declare any competing commercial interests in conjunction with the submitted work.

**- Reference:** include every concerned document that the authors referred in the articles. Names of the journals must be abbreviated according to the journal name lists in "Index Medicus" published annually from the website <http://www.nlm.nih.gov>

## » Writing the References «

The references of both Thai and English articles must be written only in English. Reference system must be Vancouver reference style using Arabic numbers, making order according to the texts chronologically. Titles of the Journal must be in Bold and Italics. The publication year, issue and pages are listed respectively without volume.

### Sample of references from articles in Journals

#### - Authors

Zhao Y, Zhu J: *In vivo* color measurement of 410 maxillary anterior teeth. *Chin J Dent Res* 1998;1(3):49-51.

#### - Institutional authors

Council in Dental Materials and Devices. New American Dental Association Specification No.27 for direct filling resins. *J Am Dent Assoc* 1977;94(6):1191-4

#### - No author

Cancer in South Africa [editorial]. *S Afr Med J* 1994;84:15

# Journal of The Dental Association of Thailand

## Sample of references from books and other monographs

### - Authors being writers

Neville BW, Damn DD, Allen CM, Bouquot JE. Oral and maxillofacial pathology. Philadelphia: WB Saunders; 1995. P. 17-20

### - Authors being both writer and editor

Norman IJ, Redfern SJ, editors. Mental health care for the elderly people. New York: Churchill Livstone; 1996.

### - Books with authors for each separate chapter

### - Books with authors for each separate chapter and also have editor

Sanders BJ, Handerson HZ, Avery DR. Pit and fissure sealants; In: McDonald RE, Avery DR, editors. Dentistry for the child and adolescent. 7th ed. St Louis: Mosby; 2000. P. 373-83.

### - Institutional authors

International Organization for Standardization. ISO/TR 11405 Dental materials-Guidance on testing of adhesion to tooth structure. Geneva: ISO; 1994.

## Samples of references from academic conferences

### - Conference proceedings

Kimura J, Shibusaki H, editors. R The Journal of the Dental Association of Thailand (JDAT): (ISSN 2408-1434) online open access and double-blind peer review journal and also supported by the Dental Association of Thailand advances in clinical neurophysiology. Proceeding of the 10th International Congress of EMG and Clinical Neurophysiology; 1995 Oct 15-19; Kyoto, Japan. Amsterdam; Elsevier; 1996.

### - Conference paper

Hotz PR. Dental plaque control and caries. In: Lang PN, Attstrom R, Loe H, editors. Proceedings of the European Work shop on Mechanical Plaque Control; 1998 May 9-12; Berne, Switzerland. Chicago: Quintessence Publishing; 1998. p. 25-49.

### - Documents from scientific or technical reports

Fluoride and human health. WHO Monograph; 1970. Series no.59.

## Samples of reference from thesis

Muandmingsuk A. The adhesion of a composite resin to etched enamel of young and old teeth [dissertation]. Texas: The University of Texas, Dental Branch at Houston; 1974.

## Samples of reference from these articles are only accepted in electronic format

### - Online-only Article (With doi (digital identification object number))

Rasperini G, Acunzo R, Limioli E. Decision making in gingival rec experience. *Clin Adv Periodontics* 2011;1: 41-52. doi:10.1902 cap.2011.1000002.

### - Online only article (without doi)

Abood S. Quality improvement initiative in nursing homes: the ANA acts in an advisory role. *Am J Nurs* 2002; 102(6) [cited 2002 Aug 12] Available from: <http://nursingworld.org/AJN/2002/june/WaWatch.htmArticle>

## Samples of references from patents/petty patents

### - Patent

Pagedas AC, inventor; Ancel Surgical R&D Inc., assignee. Flexible endoscopic grasping and cutting device and positioning tool assembly. United States patent US 20020103498. 2002 Aug 1.

### - Petty patent

Priprem A, inventor, Khon Kaen University. Sunscreen gel and its manufacturing process. Thailand petty patent TH1003001008. 2010 Sep 20.

## » Preparation of the Review articles and Case reports «

Review articles and case reports should follow the same format with separate pages for abstract, introduction, discussion, conclusion, acknowledgement and references.

## » The Editorial and Peer Review Process «

The submitted manuscript will be reviewed by at least 2 qualified experts in the respective fields. In general, this process takes around 4-8 weeks before the author be noticed whether the submitted article is accepted for publication, rejected, or subject to revision before acceptance.

The author should realize the importance of correct format manuscript, which would affect the duration of the review process and the acceptance of the articles. The Editorial office will not accept a submission if the author has not supplied all parts of the manuscript as outlined in this document.

## » Copyright «

Upon acceptance, copyright of the manuscript must be transferred to the Dental Association of Thailand.

PDF files of the articles are available at <http://www.jdat.org>

**Publication fee for journals:** Free for Black and white printing this article. The price of color printing is extra charged 10,000 bath/article/1,500 copy (vat included).

Note: Color printing of selected article is considered by editorial board. (no extra charge)

» *Updated January, 2024* «

# วิทยาสารทันตแพทยศาสตร์

## JOURNAL OF THE DENTAL ASSOCIATION OF THAILAND

### สารบัญ

ปีที่ 76 ฉบับที่ 1 มกราคม - มีนาคม พ.ศ. 2569

### Contents

Volume 76 Number 1 January - March 2026

#### บทวิทยาการ

Determinants Related to Disparities in Dental Care Utilization: Evidence from Thailand's Aging Society Prior to the National Oral Health Plan Implementation

Nhan Thu Le Truong

Tewarit Somkotra

Pagaporn Pantuwadee Pisarnturakit

เปรียบเทียบความรู้ ทัศนคติและการปฏิบัติในการดูแลสุขภาพช่องปากของผู้ดูแลระหว่างการใช้โปรแกรมໂตตอ卜อัตโนมัติใช้งานต่อเนื่อง 21 วันและระยะสั้นในจังหวัดสงขลา

สมอจิต พิธพรชัยกุล

ชุตินันท์ เพพพิพร

พฤทิพิพ ฤทธิชู

อศวรรณ ลินศิริวงศ์

Development of a Deep Learning Model for Diagnosing Class III Malocclusion in Pediatric Patients Using Lateral Cephalometric Radiographs

Chaypat Simsuchin

Supattanawaree Thipcharoen

Association between a Quantity of *Bifidobacterium longum* and *Fusobacterium nucleatum*, Clinical Symptoms, and Radiographic Findings in Infected Root canal of Primary Molars

Mirunti Chanovit

Kemthong Mitrakul

#### Original Article

1 Determinants Related to Disparities in Dental Care Utilization: Evidence from Thailand's Aging Society Prior to the National Oral Health Plan Implementation  
Nhan Thu Le Truong  
Tewarit Somkotra  
Pagaporn Pantuwadee Pisarnturakit

10 Comparison of Caregivers' Knowledge, Attitude and Practice on Oral Health Care for Children Between Using A 21-Day Chatbot and Short-Term Chatbot in Songkhla Province  
Samerchit Pithpornchaiyakul  
Chutinun Teppipit  
Pruettiporn Rittichu  
Ussawan Linsirivong

20 Development of a Deep Learning Model for Diagnosing Class III Malocclusion in Pediatric Patients Using Lateral Cephalometric Radiographs  
Chaypat Simsuchin  
Supattanawaree Thipcharoen

33 Association between a Quantity of *Bifidobacterium longum* and *Fusobacterium nucleatum*, Clinical Symptoms, and Radiographic Findings in Infected Root canal of Primary Molars  
Mirunti Chanovit  
Kemthong Mitrakul

# วิทยาสารทันตแพทยศาสตร์

## JOURNAL OF THE DENTAL ASSOCIATION OF THAILAND

### สารบัญ

ปีที่ 76 ฉบับที่ 1 มกราคม - มีนาคม พ.ศ. 2569

### Contents

Volume 76 Number 1 January - March 2026



The 13<sup>th</sup> Annual Scientific Meeting of the Royal College of Dental Surgeons of Thailand

#### บทวิทยาการ

การประเมินค่าตอบของแข็งบนภาษาไทยสำหรับผู้ป่วยที่ได้รับการผ่าตัดขากรรไกรร่วมกับการจัดฟัน

อรรถพล ยงวิกุล

อัญญา วิหครัตน์

ณัฐรินทร์ วงศ์ศิริฉัตร

ทองนารถ คำใจ

มุ่มมองและการปรับตัวของบุคลากรที่เกี่ยวข้องกับระบบทันตสาธารณสุข ในโรงพยาบาลส่งเสริมสุขภาพตำบลที่ถ่ายโอนไปองค์กรปกครองส่วนท้องถิ่นจังหวัดตาก

ปิติ จิตรุ่งเรืองนิจ

อาทิตย์กัล จึงพัฒนาวดี

ปัจจัยที่สัมพันธ์กับระดับความชอบหวานของคนไทยมุสลิม

เชื้อสายมลายู วัยก่อนสูงอายุในอำเภอสายบุรี

จังหวัดปัตตานี

นรีดา เพาะเดร์

อัจรา วัฒนาภา

อังคณา เรียมนันทรี

#### Original Article

42 Assessment of Thai-Language Chatbot Responses for Patients Regarding Orthognathic Surgery

Atapol Yongvikul

Anya Wihokrat

Nattharin Wongsirichat

Thongnard Kumchai

53 Perspectives and Adaptation of Personnel Involved in the Oral Health System in Subdistrict Health Promoting Hospitals Transferred to Local Administrative Organizations in Tak Province

Piti Jitrungruangnij

Atisak Chuengpattanawadee

62 Factors Associated with Sweet Preference among Pre-elderly Thai Melayu Muslims in Saiburi District, Pattani Province

Nureeda Pohde

Achara Wattanapa

Angkana Thearmontree

#### Front cover image:

adapted from *Figure 1 Image A shows the use of a face mask to stimulate midface growth. Image B displays a radiograph before treatment, and Image C shows a radiograph after treatment using a face mask to stimulate midface growth.* (see Simsuchin and Thipcharoen, page 21 for detail)

## Original Article

# Determinants Related to Disparities in Dental Care Utilization: Evidence from Thailand's Aging Society Prior to the National Oral Health Plan Implementation

Nhan Thu Le Truong<sup>1,2</sup>, Tewarit Somkotra<sup>3</sup>, Pagaporn Pantuwaddee Pisarnturakit<sup>3</sup>

<sup>1</sup>Graduate program in Dental Public Health, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand

<sup>2</sup>Faculty of Odonto-Stomatology, Can Tho University of Medicine and Pharmacy, Can Tho city, Vietnam

<sup>3</sup>Department of Community Dentistry, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand

## Abstract

The study aims to examine dental care utilization and the determinants contributing to the observed inequalities among Thai older adults during the demographic shift of Thailand to a complete-aged society, in which over 20% of the population are over the age of 60 years old, prior to the implementation of the national oral health plan for the older adults in 2015. This study analyzed data from the nationally representative Health and Welfare Surveys conducted in 2009 and 2015. Participants included individuals aged 60 years and older (N = 11,402 in 2009; N = 25,566 in 2015). Dental care utilization was measured by self-reported utilization within the past 12 months. Descriptive and logistic regression analyses were performed regarding the objective. Socioeconomic and geographic inequalities in dental care utilization persisted throughout the study period. Older adults with higher socioeconomic status were more likely to utilize dental care than their lower socioeconomic status peers. Utilization was highest in Bangkok and lowest in the rural areas of each region. The beneficiaries of the Civil Servant Medical Scheme were twice as likely to use dental services compared to those under the Universal Coverage Scheme. The findings from the multivariate analysis identify several key factors that significantly influence the utilization of dental care. These factors provide valuable insights into how demographic, socioeconomic, geographic, and health-related factors can influence access to dental services. Demographic Factors: Women tend to use dental care services more than men. In 2009, their Adjusted Odds Ratio (OR<sub>adj</sub>) was 1.19 (1.02, 1.38), which increased to 1.31 (1.18, 1.47) by 2015. Younger older adults (ages 65-74) also exhibit higher dental visit rates, with an OR<sub>adj</sub> of 2.28 (1.76, 2.96) in 2009 and 1.93 (1.57, 2.35) in 2015. Middle-aged older adults (ages 75-84) experienced a significant increase in dental care utilization, with OR<sub>adj</sub> values of 1.86 (1.42, 2.43) in 2009 and 1.61 (1.30, 1.98) in 2015. Socioeconomic Factors: Individuals in the highest income group (5th quintile) had an OR<sub>adj</sub> of 1.96 (1.60, 2.41) in 2009, which increased to 2.25 (1.94, 2.60) in 2015. Higher education levels, particularly completing secondary school, are associated with more frequent dental visits, reflected by an OR<sub>adj</sub> of 1.78 (1.30, 2.43) in 2009 and 2.68 (2.03, 3.54) in 2015. Geographic Factors: Residents of the Central region utilize dental services less frequently. Their OR<sub>adj</sub> was 0.44 (0.33, 0.59) in 2009 and decreased to 0.34 (0.27, 0.41) in 2015. Those living in rural areas also reported lower utilization rates, with an OR<sub>adj</sub> of 0.49 (0.32, 0.54) in 2009 and 0.34 (0.28, 0.41) in 2015. Health-Related Factors: Being enrolled in the Civil Servant Medical Benefit Scheme (CSMBS) is associated with more dental visits, with an OR<sub>adj</sub> of 1.85 (1.59, 2.14) in 2009, increasing to 2.10 (1.88, 2.35) in 2015. Additionally, having a chronic illness is linked to increased dental care utilization, with an OR<sub>adj</sub> of 1.25 (1.10, 1.43) in 2009 and 1.29 (1.16, 1.43) in 2015. During the transition of aged society, inequalities in dental care utilization among Thai older adults persist, particularly among those with low socioeconomic status and residents in rural areas. Targeted policy reforms, such as expanding preventive programs and integrating dental services into primary care, are essential to promote equitable oral health access among Thailand's aging population.

**Keywords:** Aging society, Dental care utilization, Inequality, Thai older adults

**Received date:** Jun 14, 2025

**Revised date:** Aug 3, 2025

**Accepted date:** Aug 6, 2025

**Doi:** 10.14456/jdat.2026.1

**Correspondence to:**

Pagaporn Pantuwadee Pisarnturakit, Department of Community Dentistry, Faculty of Dentistry, Chulalongkorn University, 34 Henry Dunant Road, Pathumwan, Bangkok 10330, Thailand. Tel: 02-2188545 Email: pagaporn.p@chula.ac.th

## Introduction

Utilization of dental care is a fundamental component in achieving optimal oral health outcomes. Nevertheless, considerable disparities in access and use of dental services persist worldwide<sup>1-3</sup>, particularly among socioeconomically disadvantaged groups and vulnerable populations such as older adults. These disparities have been identified as a pressing global public health issue.<sup>1,2</sup> In response, the World Health Organization (WHO) has emphasized the importance of universal health coverage (UHC) to ensure equitable access to healthcare services, including dental care, regardless of an individual's financial status.

In Thailand, the Universal Coverage (UC) policy was introduced in 2001 as a means to promote more equitable utilization of healthcare services. For older adults aged 60 and above, health insurance coverage is provided through two main schemes: The Civil Servant Medical Benefit Scheme (CSMBS) and the Universal Coverage Scheme (UCS). The CSMBS offers extensive benefits to retired civil servants and their eligible dependents, including access to all public health facilities and a wider array of dental treatments such as fixed prosthetics and endodontic procedures. Conversely, the UCS primarily serves the general population through public primary care units, such as community and sub-district hospitals, with access to higher-level care that requires a formal referral. Notably, neither scheme currently includes private dental providers, who are primarily concentrated in urban areas.

Despite the implementation of these health insurance schemes, disparities in dental care utilization remain, especially between urban and rural populations and across socioeconomic strata.<sup>4</sup> Utilization rates are

consistently higher among wealthier individuals and those residing in urban areas, while the economically disadvantaged and rural dwellers exhibit substantially lower access to care. Since the designation of Thailand as an aging society in 2008, the country has faced the dual burden of meeting the healthcare demands of an expanding older adult population and ensuring equitable access across diverse population groups. Although the UC policy has improved overall healthcare accessibility, significant inequalities in dental care utilization persist among older adults.<sup>5</sup> Furthermore, the government implemented the National Oral Health Plan for Thai older persons (2015-2022) to advance the strategy for developing the system, models, and quality of dental care services for the older adult population.

This study is grounded in existing literature that identifies three key points: 1) significant disparities in healthcare persist, 2) socioeconomic factors have a strong impact on healthcare utilization, and 3) insurance schemes are vital for improving healthcare access. This research aims to examine the underlying determinants of disparities in dental care utilization among Thai older adults during this critical demographic transition. By identifying the key factors that influence dental care utilization within the context of the aging population of Thailand, this study will contribute valuable insights into how these factors can address healthcare disparities. Moreover, the findings will serve as a useful reference before the implementation of the National Oral Health Plan for older adults in Thailand. Additionally, the study will assess the progress made in achieving equitable access to dental care and share Thai policy experience as a

potential model for other developing countries that are working to enhance health equity for their aging populations.

## Material and Methods

This study utilized data from the nationally representative Health and Welfare Survey (HWS), conducted in 2009 and 2015 by the National Statistical Office of Thailand. The HWS employed a two-stage stratified sampling design, with survey weights applied to ensure national representativeness. The sampling frame included non-institutional households of municipal (urban) and non-municipal (rural) areas in each province across the country. Fifteen households were systematically selected per municipal block and ten per rural village. Older adults, defined as individuals aged 60 and above from these households, were identified for inclusion in the study, totaling 11,402 respondents in 2009 and 25,566 in 2015. Data were collected via structured face-to-face interviews using standardized household and individual questionnaires. Although traditional sample size calculations were not applicable due to the use of comprehensive national HWS data, the large sample size provides robust statistical power and representativeness for population-level analysis. Additionally, the use of secondary data has several advantages: the dataset is nationally representative, was designed and conducted by reputable national health research institutions, and follows standardized data collection protocols with rigorous sampling methodologies.

The dependent variable was dental care utilization, defined by a self-reported response to the question: "Have you utilized dental care at any facility during the past 12 months preceding the survey?" In addition, independent variables were categorized into two main factors: the predisposing and enabling factors. Predisposing factors comprised of six domains: a) household living standards assessed via an asset index which is derived through Principal Component Analysis (PCA) using STATA. It is based on the ownership of household assets such as electronic items (television, mobile phone, computer), vehicles (car/truck/minibus, motorcycle), and household appliances (refrigerator), and etc. The asset index is then categorized into quintiles. The other domains include: b)

age groups (60–69 years, 70–79 years, 80 years and above); c) sex (male, and female), and d) marital status (married, single, widowed/ divorced/separated), e) educational attainment (no formal education, primary, secondary, vocational, tertiary), and f) health conditions (presence of chronic illness (yes/no) and dependency in daily self-care activities (dependent/independent)). Enabling factors comprised four domains: a) geographic characteristics: five regions (North, Northeast, Central, South, and Bangkok) and area of residence (urban/rural), and b) working status was measured through whether the older adults were economically active. Furthermore, c) health insurance entitlements were categorized into the UCS, CSMBS, and those who were not entitled to the publicly subsidized schemes. Lastly, d) health-related behaviors were categorized into health-compromising behaviors (smoking and alcohol consumption) and health-enhancing behaviors (whether the older adult had obtained health promotion and prevention services in the past year (yes/no)).

Descriptive statistics were used to calculate the percentage and 95.0% confidence intervals (CIs) of dental care utilization across all determinants variables. Bivariate analyses were conducted to explore crude associations. Associations between determinants and dental care utilization were assessed using multivariate logistic regression, yielding adjusted odds ratios (ORs) with 95% CIs. In the process of determinant selection in this analysis, binary logistic regression was used, and stepwise methods were employed according to the theoretical framework. Along with these, potential confounders (age, sex, region, and insurance scheme) identified a priori were also included in the model. All analyses accounted for survey design using weights and were performed in STATA 14 (StataCorp, College Station, TX, USA), with statistical significance set at  $\alpha = 0.05$ .

This study utilized publicly available secondary data. Ethical approval for the use of this dataset was obtained from the Research Ethics Committee of the Faculty of Dentistry, Chulalongkorn University (HREC-DCU 2017059). Informed consent was obtained from all participants in the original HWS surveys, and all data were anonymized prior to analysis.

## Results

This study analyzed data from the 2009 and 2015 Health and Welfare Surveys (HWS) to assess patterns of dental care utilization among Thai older adults and the determinants associated with such utilization. The descriptive statistics (Table 1) indicate that across both survey years, the majority of respondents were in the early older adult group (60–69 years), comprising 52.4% in 2009 and 56.3%

in 2015. Women consistently represented the majority (approximately 57%), and most participants were married. The educational attainment level among Thai older adults was consistent, with more than 70% having primary education. A substantial share of the older adults fell into the lower asset quintiles, although a gradual shift toward higher quintiles was observed in 2015.

**Table 1** Characteristics of samples of Thai older adults in HWS 2009 and HWS 2015

| Determinants<br>(=1 if yes, =0 if otherwise)         | Proportionate distribution of samples, and dental care utilization |                 |                     |                 |
|------------------------------------------------------|--------------------------------------------------------------------|-----------------|---------------------|-----------------|
|                                                      | HWS 2009 (N=11,402)                                                |                 | HWS 2015 (N=25,566) |                 |
|                                                      | Sample (%)                                                         | Dental care (%) | Sample (%)          | Dental care (%) |
| <b>Predisposing factors</b>                          |                                                                    |                 |                     |                 |
| <u>Household living standards:</u>                   |                                                                    |                 |                     |                 |
| 1 <sup>st</sup> Quintile                             | 25.13                                                              | 6.31            | 22.25               | 4.91            |
| 2 <sup>nd</sup> Quintile                             | 24.92                                                              | 6.83            | 25.66               | 4.61            |
| 3 <sup>rd</sup> Quintile                             | 9.19                                                               | 7.82            | 16.16               | 5.47            |
| 4 <sup>th</sup> Quintile                             | 19.28                                                              | 9.14            | 16.24               | 6.98            |
| 5 <sup>th</sup> Quintile                             | 21.47                                                              | 14.71           | 19.67               | 10.39           |
| <u>Educational level attainment:</u>                 |                                                                    |                 |                     |                 |
| Not attended formal education                        | 14.35                                                              | 5.14            | 9.64                | 3.16            |
| Up to Primary                                        | 73.63                                                              | 8.36            | 77.43               | 5.46            |
| Secondary                                            | 7.07                                                               | 13.41           | 6.08                | 10.52           |
| Vocational                                           | 4.49                                                               | 11.76           | 1.83                | 16.78           |
| Tertiary or higher                                   | 0.45                                                               | 17.13           | 4.88                | 17.18           |
| <u>Age groups (years):</u>                           |                                                                    |                 |                     |                 |
| Early older adult (60-69)                            | 52.38                                                              | 10.69           | 56.26               | 7.46            |
| Middle older adult (70-79)                           | 33.56                                                              | 8.91            | 29.82               | 5.68            |
| Late older adult (80 and over)                       | 14.04                                                              | 4.31            | 13.91               | 3.19            |
| <u>Sex:</u>                                          |                                                                    |                 |                     |                 |
| Male                                                 | 42.61                                                              | 8.62            | 43.72               | 6.03            |
| Female                                               | 57.38                                                              | 9.15            | 56.27               | 6.57            |
| <u>Marital status:</u>                               |                                                                    |                 |                     |                 |
| Single                                               | 3.89                                                               | 9.46            | 3.93                | 7.18            |
| Married                                              | 60.37                                                              | 9.75            | 62.15               | 6.98            |
| Widowed/ divorced/ separated                         | 35.74                                                              | 7.48            | 33.92               | 5.04            |
| <u>Health conditions:</u>                            |                                                                    |                 |                     |                 |
| Presence of chronic illness                          | 54.91                                                              | 9.81            | 56.03               | 6.94            |
| Dependency for routine self-care or daily activities | 58.97                                                              | 10.83           | 54.22               | 7.54            |
| <b>Enabling factors</b>                              |                                                                    |                 |                     |                 |
| <u>Region:</u>                                       |                                                                    |                 |                     |                 |
| Bangkok                                              | 4.13                                                               | 16.14           | 3.61                | 14.70           |
| Central                                              | 31.39                                                              | 8.86            | 28.47               | 5.92            |
| North                                                | 24.83                                                              | 7.59            | 25.37               | 6.86            |
| Northeast                                            | 24.81                                                              | 8.69            | 28.32               | 5.34            |
| South                                                | 14.84                                                              | 9.69            | 14.22               | 6.08            |

Table 1 Characteristics of samples of Thai older adults in HWS 2009 and HWS 2015 (cont.)

| Determinants<br>(=1 if yes, =0 if otherwise)              | Proportionate distribution of samples, and dental care utilization |                 |                     |                 |
|-----------------------------------------------------------|--------------------------------------------------------------------|-----------------|---------------------|-----------------|
|                                                           | HWS 2009 (N=11,402)                                                |                 | HWS 2015 (N=25,566) |                 |
|                                                           | Sample (%)                                                         | Dental care (%) | Sample (%)          | Dental care (%) |
| <u>Area of residence:</u>                                 |                                                                    |                 |                     |                 |
| Urban (excluding Bangkok)                                 | 53.78                                                              | 9.61            | 50.69               | 6.46            |
| Rural                                                     | 42.08                                                              | 7.31            | 45.70               | 5.54            |
| <u>Working status:</u>                                    |                                                                    |                 |                     |                 |
| Economically active                                       | 36.37                                                              | 10.01           | 38.40               | 6.79            |
| <u>Health insurance entitlement:</u>                      |                                                                    |                 |                     |                 |
| UCS                                                       | 74.54                                                              | 7.40            | 79.27               | 5.19            |
| CSMBS                                                     | 21.62                                                              | 13.91           | 18.26               | 10.66           |
| Not entitled to public subsidized insurance               | 2.83                                                               | 9.90            | 1.22                | 11.96           |
| <u>Health-related behaviors:</u>                          |                                                                    |                 |                     |                 |
| Smoking habit                                             | 14.36                                                              | 8.01            | 13.34               | 5.44            |
| Alcohol consumption                                       | 7.22                                                               | 7.52            | 15.56               | 7.28            |
| Obtained health promotion and prevention in the past year | 4.99                                                               | 18.28           | 17.67               | 12.57           |

Dental care utilization remained low overall, exhibiting apparent socioeconomic and geographic disparities. In 2009, utilization among those in the highest asset quintile was 14.7%, nearly three times higher than that of those in the lowest quintile (6.3%). This pattern persisted in 2015, with utilization at 10.4% for the highest quintile and only 4.9% for the lowest. Similarly, individuals with higher educational levels consistently reported greater use of dental services. For instance, those with tertiary education had utilization rates of 17.1% in 2009 and 17.2% in 2015, while those with no formal education had rates of only 5.1% and 3.2%, respectively. Age and functional status play a crucial role in influencing utilization patterns for dental services. Research indicates that early older adults demonstrate the highest levels of service use, while utilization tends to decrease with age. For instance, in 2015, only 3.2% of individuals aged 80 and older accessed dental care, compared to 7.5% among those aged 60 to 69.

Additionally, individuals who maintain independence in their daily activities are more inclined to seek care than those who experience dependency. Geographical disparities were notable. Bangkok had the highest rates of utilization (16.1% in 2009 and 14.7% in 2015), while across all regions outside of Bangkok, utilization remained at lower rates and rural areas consistently showed the lowest rates (7.3% in 2009; 5.5% in 2015). Regarding health insurance, individuals

covered by the Civil Servant Medical Benefit Scheme (CSMBS) had significantly higher utilization rates (13.9% in 2009 and 10.7% in 2015) than those under the Universal Coverage Scheme (7.4% and 5.2%, respectively). Utilization was higher among those who had participated in health promotion and prevention programs in the past year, at 18.3% in 2009 and 12.6% in 2015, compared to those who had not.

The multivariable logistic regression results (Table 2) further confirmed a significant association between socioeconomic status and dental care utilization. In both survey years, individuals in the highest asset quintile had significantly higher odds of dental service use compared to the lowest quintile (OR = 1.96; 95% CI: 1.60–2.41 in 2009; OR = 2.25; 95% CI: 1.94–2.60 in 2015). Education level also exhibited a strong, graded effect; in 2015, those with tertiary or higher education were over four times more likely to utilize services compared to those with no formal education (OR = 4.03; 95% CI: 3.05–5.32). Region of residence was another strong predictor. Compared with Bangkok, all other regions showed significantly lower odds of utilization. For example, in 2015, residents of the Northeast had an OR of 0.30 (95% CI: 0.24–0.37), while those in the Central region had an OR of 0.34 (95% CI: 0.27–0.41).

Insurance status significantly influenced service utilization. In 2015, beneficiaries of CSMBS were twice as likely to utilize dental care compared to those enrolled

in the UCS (OR = 2.10; 95% CI: 1.88–2.35). Interestingly, individuals without any public insurance had even higher odds of utilizing dental services (OR = 2.42; 95% CI: 1.72–3.41). This likely reflects their greater economic resources and access to private services. Several demographic factors were also positively associated with service utilization, including being female, being married, being economically active, and not having physical dependencies. Health-related

behaviors showed mixed associations. In 2015, alcohol consumption was associated with slightly higher odds of utilization (OR = 1.23; 95% CI: 1.06–1.42), while smoking was negatively associated (OR = 0.83; 95% CI: 0.70–0.98). Participation in health promotion activities emerged as the strongest predictor of service use, with odds of use exceeding 2.5 in both years.

**Table 2** Associations of determinants and dental care utilization during the past 12 months of Thai older adult, in HWS 2009 and HWS 2015

| Determinants<br>(=1 if yes, =0 if otherwise)         | Adjusted odds ratio with 95% confidence interval |                   |
|------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                      | HWS 2009                                         | HWS 2015          |
| <b>Predisposing factors</b>                          |                                                  |                   |
| <b>Household living standards:</b>                   |                                                  |                   |
| 1 <sup>st</sup> Quintile                             | reference                                        | reference         |
| 2 <sup>nd</sup> Quintile                             | 1.02 (0.82, 1.25)                                | 0.94 (0.79, 1.10) |
| 3 <sup>rd</sup> Quintile                             | 1.15 (0.88, 1.51)                                | 1.12 (0.94, 1.34) |
| 4 <sup>th</sup> Quintile                             | 1.32 (1.07, 1.63)                                | 1.45 (1.23, 1.72) |
| 5 <sup>th</sup> Quintile                             | 1.96 (1.60, 2.41)                                | 2.25 (1.94, 2.60) |
| <b>Educational level attainment:</b>                 |                                                  |                   |
| Not attended formal education                        | reference                                        | reference         |
| Up to Primary                                        | 1.72 (1.12, 1.79)                                | 1.48 (1.18, 1.85) |
| Secondary                                            | 1.78 (1.30, 2.43)                                | 2.68 (2.03, 3.54) |
| Vocational                                           | 2.99 (1.16, 4.54)                                | 1.02 (2.88, 5.63) |
| Tertiary or higher                                   | 1.38 (0.56, 3.76)                                | 4.03 (3.05, 5.32) |
| <b>Age groups (years):</b>                           |                                                  |                   |
| Early older adult (60-69)                            | 2.28 (1.76, 2.96)                                | 1.93 (1.57, 2.35) |
| Middle older adult (70-79)                           | 1.86 (1.42, 2.43)                                | 1.61 (1.30, 1.98) |
| Late older adult (80 and over)                       | reference                                        | reference         |
| <b>Sex:</b>                                          |                                                  |                   |
| Male                                                 | reference                                        | reference         |
| Female                                               | 1.19 (1.02, 1.38)                                | 1.31 (1.18, 1.47) |
| <b>Marital status:</b>                               |                                                  |                   |
| Single                                               | 1.31 (0.94, 1.85)                                | 1.03 (0.79, 1.33) |
| Married                                              | 1.36 (1.17, 1.58)                                | 1.19 (1.06, 1.35) |
| Widowed/ divorced/ separated                         | reference                                        | reference         |
| <b>Health conditions:</b>                            |                                                  |                   |
| Presence of chronic illness                          | 1.25 (1.10, 1.43)                                | 1.29 (1.16, 1.43) |
| Dependency for routine self-care or daily activities | 1.83 (1.58, 2.10)                                | 1.59 (1.43, 1.77) |
| <b>Enabling factors</b>                              |                                                  |                   |
| <b>Region:</b>                                       |                                                  |                   |
| Bangkok                                              | reference                                        | reference         |
| Central                                              | 0.44 (0.33, 0.59)                                | 0.34 (0.27, 0.41) |
| North                                                | 0.36 (0.27, 0.49)                                | 0.39 (0.32, 0.48) |
| Northeast                                            | 0.42 (0.31, 0.57)                                | 0.30 (0.24, 0.37) |
| South                                                | 0.48 (0.35, 0.66)                                | 0.34 (0.27, 0.43) |

**Table 2** Associations of determinants and dental care utilization during the past 12 months of Thai older adult, in HWS 2009 and HWS 2015 (cont.)

| Determinants<br>(=1 if yes, =0 if otherwise)              | Adjusted odds ratio with 95% confidence interval |                   |
|-----------------------------------------------------------|--------------------------------------------------|-------------------|
|                                                           | HWS 2009                                         | HWS 2015          |
| <u>Area of residence:</u>                                 |                                                  |                   |
| Urban (excluding Bangkok)                                 | 0.55 (0.43, 0.72)                                | 0.40 (0.33, 0.48) |
| Rural                                                     | 0.49 (0.32, 0.54)                                | 0.34 (0.28, 0.41) |
| <u>Working status:</u>                                    |                                                  |                   |
| Economically active                                       | 1.23 (1.08, 1.49)                                | 1.23 (1.11, 1.38) |
| <u>Health insurance entitlement:</u>                      |                                                  |                   |
| UCS                                                       | reference                                        | Reference         |
| CSMBS                                                     | 1.85 (1.59, 2.14)                                | 2.10 (1.88, 2.35) |
| Not entitled to public subsidized insurance               | 1.11 (0.75, 1.63)                                | 2.42 (1.72, 3.41) |
| <u>Health-related behaviors:</u>                          |                                                  |                   |
| Smoking habit                                             | 1.08 (0.87, 1.34)                                | 0.83 (0.70, 0.98) |
| Alcohol consumption                                       | 0.88 (0.66, 1.17)                                | 1.23 (1.06, 1.42) |
| Obtained health promotion and prevention in the past year | 2.40 (1.92, 3.01)                                | 2.59 (2.33, 2.89) |

## Discussion

This study analyzes data from the Health and Welfare Surveys of Thailand (2009, 2015) to examine inequalities in dental care utilization among older adults during the transition of the country to a complete-aged society, in which over 20% of the population are over the age of 60 years old. Despite the Universal Health Coverage (UHC) policy, significant inequalities in dental care utilization persist, particularly among individuals with lower socioeconomic status.

The years 2009 and 2015 were chosen strategically due to significant demographic and healthcare policy milestones in Thailand. In terms of demographics, Thailand was officially recognized as an "aging society" by the United Nations in 2008. The year 2009 marked the beginning of an important period of demographic transition, making it a suitable baseline year to capture the early stages of population aging. From a policy perspective, the National Oral Health Plan for Thai Older Adults (2015-2022) was launched in 2015. This plan provides a comprehensive framework to examine healthcare access both before and during the implementation of targeted oral health policies. These years are significant for research as they represent a crucial time for demographic and healthcare policy changes. Selecting 2009 and 2015 allows for an

analysis of healthcare utilization patterns during this critical transition phase, and facilitates an assessment of how policies have affected dental care access for older adults. Overall, these selected years offer an insightful opportunity to capture early demographic shifts, evaluate pre-implementation healthcare access, and examine the initial impacts of national oral health strategies.

The research utilizes secondary data, which might present potential selection and sampling challenges. Selection bias may occur if the survey's sampling frame is inappropriate, leading to biases in the original data collection process and affecting the representativeness of the sample. While there are some strengths to using secondary data from the National Health and Welfare Survey, several limitations must be considered in this analysis. The predefined questionnaire restricts the scope of this study. There may be a mismatch between the original research objectives and the current research questions. There is a risk of recall bias in the self-reported data. Predefined variables limit our analytical flexibility. There is limited ability to validate the data collection methods. The depth of health-related information may be insufficient. Critical variables necessary for this current research might be missing. There is a lack of comprehensive contextual

data. The data collection protocol cannot be modified. Additional information was unable to be collected. Assessment of health is limited in depth. These limitations should be considered when interpreting or applying the findings of this study. Additionally, several potential confounding variables were identified, and statistical adjustments were used to control for demographic factors and health-related characteristics through multivariable regression models. Specifically, binary logistic regression was employed with stepwise selection methods to include variables.

Research indicates that early older adults exhibit the highest levels of service use, while utilization typically declines with age. Furthermore, individuals who remain independent in their daily activities are more likely to seek care compared to those who are dependent on others. Understanding these trends can help develop healthcare strategies that better support older adults and enhance access to dental services. However, it is essential to acknowledge that these observations are based on a descriptive cross-sectional study, which imposes certain limitations on interpretation.

Consistent with earlier findings, the study reveals a significant monotonic dose-response relationship between household socioeconomic status and dental care utilization: older adult individuals in higher household asset quartiles were more likely to utilize dental services. Educational attainment, a proxy for socioeconomic status, was also positively associated with utilization. Notably, Thai older adults with higher education levels consistently appeared in higher SES groups. These results align with comparative studies from high-income countries that employ diverse healthcare financing systems, including Bismarckian, social insurance, and tax-based models, which found persistent socioeconomic status-related inequalities in dental care.<sup>6-8</sup> However, such inequalities appear largely independent of specific financing models, suggesting that factors beyond insurance structures play a critical role. In Thailand, the utilization of dental care among older adults remains lower than in developed countries, likely due to systemic challenges beyond financial protection. The uneven distribution of dental professionals, concentrated

in urban centers due to the growth of the private sector, contributes to geographic inequalities.<sup>9-11</sup> Addressing this imbalance requires policy measures, such as incentives for rural dental practices and expanded public-private partnerships to improve access for vulnerable populations.<sup>12</sup>

Non-financial barriers also play a significant role. Older adults often face physical and cognitive limitations, reduced awareness of oral health needs, and low motivation to seek care. Chronic health conditions, mobility impairments, vision loss, and dependency on caregivers further restrict their ability to maintain oral hygiene and attend dental appointments. Transportation costs and other indirect expenses also deter access. To mitigate these barriers, mobile dental units and portable equipment can facilitate outreach, particularly for individuals who are homebound or institutionalized, thereby improving access to dental care. Residential care settings provide opportunities for on-site service delivery. Expanding the role of dental nurses and training primary healthcare workers in geriatric dentistry may enhance the integration of oral health into primary care. Such approaches can help reduce socioeconomic disparities and improve health literacy and self-care among older adults.<sup>7, 12-14</sup>

Importantly, while these barriers do not entirely prevent dental service use, they significantly constrain access, particularly for those facing multiple disadvantages. In some cases, dental care becomes practically unattainable. Therefore, improving access requires incorporating oral health into broader health promotion efforts. Oral health remains disconnected from general health systems, despite being a key determinant of overall well-being. Integrating geriatric oral health into comprehensive healthcare strategies would enhance access to and improve the quality of care for aging populations. Cross-disciplinary collaboration is vital; for example, medical professionals and oral health providers must work together to raise awareness and coordinate services. A life-course approach emphasizing prevention and early intervention should underpin oral health policy.<sup>9-11</sup> Furthermore, the implementation of tele-dentistry strategies is essential for reducing disparities in dental care utilization among older adults, particularly those residing in rural areas.

Despite the strength of the findings, some limitations exist. The reliance on self-reported survey data introduces the potential for recall and reporting bias, which may slightly affect the accuracy of prevalence estimates. Nonetheless, the study provides a valid overview of oral health disparities among older Thais. Future research should further investigate the personal, structural, and systemic factors underlying low dental care utilization to inform targeted interventions and policy reforms aimed at improving oral health equity for the aging population.

In conclusion, this study found that despite the presence of the Universal Coverage Scheme (UCS) in Thailand, dental service utilization among the older adults remains low and inequitable. Key determinants include economic, social, geographic, and health-related factors that are related with the inequality in dental care utilization among Thai older adults. Addressing these persistent disparities requires a robust, equity-oriented primary healthcare system that emphasizes prevention, health promotion, and fair access to care. Integrating oral health into routine primary care, enhancing service delivery models, and adopting innovative outreach strategies will be essential. Furthermore, integrating oral health care services for older adults into the national development plan is critical during the transition in Thailand from a complete-aged to a super-aged society.

## Acknowledgement

The researcher gratefully acknowledges the ASEAN Scholarship by Chulalongkorn University for their financial support. Appreciation is extended to the faculty and staff at the Faculty of Dentistry, Chulalongkorn University, for their invaluable assistance, especially during the COVID-19 pandemic. Their cooperation was crucial to the successful completion of this study. All contributions are gratefully acknowledged.

**Conflict of Interest:** The authors declare no potential conflicts of interest related to this research, authorship, or publication.

## References

1. World Health Organization. Global Strategy and action plan on oral health 2023-2030. Geneva 2024.
2. World Health Organization. Global oral health status report: Towards universal health coverage for oral health by 2030. Geneva 2022.
3. Somkotra T. Inequality in oral health-care utilisation exists among older Thais despite a universal coverage policy. *Australas J Ageing* 2013;32(2):110-4.
4. Somkotra T. Experience of socioeconomic-related inequality in dental care utilization among Thai elderly under universal coverage. *Geriatr Gerontol Int* 2013;13(2):298-306.
5. Limpuangthip N, Purnaveja S, Somkotra T. Predisposing and enabling factors associated with public denture service utilization among older Thai people: a cross-sectional population-based study. *BMC Oral Health* 2019;19(1):220.
6. Allin S, Farmer J, Quinonez C, Peckham A, Marchildon G, Panteli D, et al. Do health systems cover the mouth? Comparing dental care coverage for older adults in eight jurisdictions. *Health Policy* 2020;124(9):998-1007.
7. Ghanbari-Jahromi M, Bastani P, Jalali FS, Delavari S. Factors affecting oral and dental services' utilization among Elderly: a scoping review. *BMC Oral Health* 2023;23(1):597.
8. Spinter K, Aarabi G, Valdez R, Kofahl C, Heydecke G, Konig HH, et al. Prevalence and determinants of dental visits among older adults: findings of a nationally representative longitudinal study. *BMC Health Serv Res* 2019;19(1):590.
9. Kovacs N, Liska O, Idara-Umoren EO, Mahrouseh N, Varga O. Trends in dental care utilisation among the elderly using longitudinal data from 14 European countries: A multilevel analysis. *PLoS One* 2023;18(6):e0286192.
10. Manski R, Moeller J, Chen H, Widstrom E, Listl S. Disparity in dental out-of-pocket payments among older adult populations: a comparative analysis across selected European countries and the USA. *Int Dent J* 2017;67(3):157-71.
11. Birch S, Ahern S, Brocklehurst P, Chikte U, Gallagher J, Listl S, et al. Planning the oral health workforce: Time for innovation. *Community Dent Oral Epidemiol* 2021;49(1):17-22.
12. Gostemeyer G, Baker SR, Schwendicke F. Barriers and facilitators for provision of oral health care in dependent older people: a systematic review. *Clin Oral Investig* 2019;23(3):979-93.
13. Reda SF, Reda SM, Thomson WM, Schwendicke F. Inequality in Utilization of Dental Services: A Systematic Review and Meta-analysis. *Am J Public Health* 2018;108(2):e1-e7.
14. Reda SM, Krois J, Reda SF, Thomson WM, Schwendicke F. The impact of demographic, health-related and social factors on dental services utilization: Systematic review and meta-analysis. *J Dent* 2018;75:1-6.

## บทวิทยาการ

# เปรียบเทียบความรู้ ทัศนคติและการปฏิบัติในการดูแลสุขภาพช่องปากเด็กของผู้ดูแลระหว่างการใช้โปรแกรมโต้ตอบอัตโนมัติใช้งานต่อเนื่อง 21 วันและระยะสั้น ในจังหวัดสงขลา Comparison of Caregivers' Knowledge, Attitude and Practice on Oral Health Care for Children Between Using A 21-Day Chatbot and Short-Term Chatbot in Songkhla Province

สมอจิต พิธพรชัยกุล<sup>1</sup>, ชุตินันท์ เทพพิพิธ<sup>2</sup>, พฤทธิพร ฤทธิชู<sup>2</sup>, อศวรรณ ลินศิริวงศ์<sup>2</sup>

Samerchit Pithpornchaiyakul<sup>1</sup>, Chutinun Teppipit<sup>2</sup>, Pruettiporn Rittichu<sup>2</sup>, Ussawan Linsirivong<sup>2</sup>

<sup>1</sup>หน่วยวิจัยเพื่อการพัฒนาการดูแลสุขภาพช่องปาก สาขาวิชาทันตกรรมป้องกัน คณะทันตแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ จังหวัดสงขลา ประเทศไทย  
<sup>1</sup>Improvement of Oral Health Care Research Unit, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkhla University, Songkhla, Thailand

<sup>2</sup>คณะทันตแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ จังหวัดสงขลา ประเทศไทย

<sup>2</sup>Faculty of Dentistry, Prince of Songkhla University, Songkhla, Thailand

## บทคัดย่อ

การศึกษานี้มีวัตถุประสงค์เพื่อเปรียบเทียบความรู้ ทัศนคติ การปฏิบัติในการดูแลสุขภาพช่องปากเด็ก และความพึงพอใจของผู้ดูแลระหว่างการใช้โปรแกรมโต้ตอบอัตโนมัติที่ใช้งานต่อเนื่อง 21 วันและระยะสั้น วิธีการศึกษาเป็นแบบ Quasi-experimental design ในกลุ่มผู้ปกครองเด็กอายุ 2 – 5 ปี ในเขตเมือง จังหวัดสงขลา แบ่งเป็น 2 กลุ่ม คือ กลุ่ม โปรแกรมโต้ตอบอัตโนมัติที่ใช้งานต่อเนื่อง 21 วัน และระยะสั้น เก็บผลการวิจัยโดยแบบสอบถาม Google form ก่อนและหลังการใช้งาน เปรียบเทียบคะแนนความรู้ ทัศนคติ การปฏิบัติ และความพึงพอใจด้วยสถิติ T-test และ Chi-square กรณีที่ผลก่อนการใช้งานแตกต่างกันอย่างมีนัยสำคัญทางสถิติ เปรียบผลต่างก่อนและหลังการใช้งานระหว่าง 2 กลุ่ม ผลการศึกษาพบว่า กลุ่มที่ใช้งานต่อเนื่อง 21 วันและระยะสั้น มีจำนวน 75 และ 81 คน ตามลำดับ คะแนนความรู้และการปฏิบัติเรื่องการทานอาหารแตกต่างกันอย่างมีนัยสำคัญทางสถิติ โดยกลุ่มใช้งานต่อเนื่อง 21 วันและระยะสั้น มีคะแนนความรู้  $6.8 \pm 1.6$  และ  $5.2 \pm 1.8$  ตามลำดับ ( $P\text{-value} < 0.001$ ) ส่วนคะแนนการปฏิบัติเรื่องการทานอาหารเป็น  $2.9 \pm 1.2$  และ  $2.5 \pm 1.5$  ตามลำดับ ( $P\text{-value} = 0.004$ ) ขณะที่คะแนนการปฏิบัติเรื่องการการทำความสะอาดช่องปากและทัศนคติแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ดังนั้น ทำการเปรียบเทียบผลต่าง พบร่วมคะแนนที่เพิ่มขึ้นไม่แตกต่างกัน ส่วนคะแนนความพึงพอใจแตกต่างกันอย่างมีนัยสำคัญทางสถิติ โดยมีค่าเป็น  $4.4 \pm 0.9$  และ  $4.1 \pm 1.1$  ตามลำดับ ( $P\text{-value} = 0.033$ ) กล่าวโดยสรุป โปรแกรมโต้ตอบอัตโนมัติที่ใช้งานต่อเนื่อง 21 วันมีผลเพิ่มคะแนนความรู้ พฤติกรรมการทานอาหารและความพึงพอใจของผู้ใช้งานแตกต่างกันกับ chatbot ระยะสั้น ในขณะที่การเพิ่มขึ้นของคะแนนการปฏิบัติเรื่องการดูแลช่องปากและทัศนคติไม่แตกต่างกัน

**คำสำคัญ:** การดูแลสุขภาพช่องปาก, ความรู้, เด็ก, โปรแกรมโต้ตอบอัตโนมัติ, พฤติกรรม

## Abstract

This study aimed to compare knowledge, attitudes, practices in children oral healthcare, and caregiver satisfaction between two chatbots: 21-day and short-term. The study was a quasi-experimental design involving parents of children aged 2-5 years in urban areas of Songkhla Province, divided into two groups: 21-day and short-term chatbot group. Google form surveys were used to gather research data before and after intervention. T-test and chi-square statistics were used to compare the knowledge, attitude, practice, and satisfaction scores. The two groups' differences before and after the intervention were compared in cases where the pre-intervention data showed a statistically

significant difference. According to the study's findings, there were 75 participants in the 21-day chatbot group and 81 in the short-term group. There was a statistically significant difference between the knowledge and dietary behavior scores. The knowledge scores of the short-term and 21-day chatbot groups were  $5.2 \pm 1.8$  and  $6.8 \pm 1.6$ , respectively ( $P$ -value  $< 0.001$ ). The respective scores for dietary behavior were  $2.5 \pm 1.5$  and  $2.9 \pm 1.2$  ( $P$ -value = 0.004). The oral hygiene care and attitude scores were significantly different from the beginning of the study. However, when comparing the differences, the increased scores were not significantly different. The satisfaction scores showed significant difference, with values of  $4.4 \pm 0.9$  and  $4.1 \pm 1.1$ , respectively ( $P$ -value = 0.033). In summary, 21-day chatbot showed different increases in knowledge, dietary behavior, and user satisfaction compared to the short-term chatbot. Meanwhile, the increases in oral hygiene care and attitude scores were not significantly different.

**Keywords:** Oral health care, Knowledge, child, Chatbot, Practice

Received date: Apr 9, 2025

Revised date: Jul 16, 2025

Accepted date: Aug 16, 2025

Doi: 10.14456/jdat.2026.2

#### ติดต่อเกี่ยวกับบทความ:

สมอจิต พิชพรชัยกุล, หน่วยวิจัยเพื่อการพัฒนาการดูแลสุขภาพช่องปาก สาขาวิชาทันตกรรมป้องกัน คณะทันตแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ อ.หาดใหญ่ จ.สงขลา 90110 ประเทศไทย โทรศัพท์: 081-4422236 อีเมล: samerchit.p@psu.ac.th

#### Correspondence to:

Samerchit Pithpornchayakul, Improvement of Oral Health Care Research Unit, Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkhla University, Hat Yai, Songkhla 90110, Thailand. Tel: 081-4422236 Email: samerchit.p@psu.ac.th

## บทนำ

การนำเทคโนโลยีมาสร้างเสริมสุขภาพและป้องกันโรค เป็นที่ยอมรับมากขึ้น ขณะที่ปัญหาโรคฟันผุในพื้นน้ำนมของเด็กไทย ยังเป็นปัญหาสำคัญ จากการสำรวจภาวะทันตสุขภาพแห่งชาติครั้งที่ 8 ประเทศไทย พ.ศ. 2560 พบว่าโรคฟันผุในพื้นน้ำนมมีความชุก และความรุนแรงสูง เด็ก 3 ขวบมีโรคฟันผุ ร้อยละ 52.9 ค่าเฉลี่ยฟันผุ ถอน อุดในพื้นน้ำนม 2.8 ชิ้ตต่อคน เด็ก 5 ขวบ พบโรคฟันผุร้อยละ 75.6 มีค่าเฉลี่ยฟันผุ ถอน อุดในพื้นน้ำนม 4.5 ชิ้ตต่อคน<sup>1</sup> ปัจจุบันมีการนำ AI รูปแบบโปรแกรมติดต่อบอร์ดในมือถือ (chatbot) มาให้ความรู้ ปรับพฤติกรรม การดูแลช่องปากผู้ปกครองเด็กก่อนวัยเรียน แต่ยังมีข้อจำกัด เช่น ต้องใช้งานต่อเนื่อง 21 วัน ยังอิงตามทฤษฎีการปรับพฤติกรรมที่เนื่องแล้วคนเราใช้เวลาประมาณ 21 วัน สร้างพฤติกรรมใหม่<sup>2</sup> อย่างไรก็ตามเมื่อใช้งานตามอิสระ พบว่า มีเพียงร้อยละ 57.9 ที่ใช้งานครบ 21 วัน<sup>3</sup> มีการนำ chatbot ปรับพฤติกรรม เช่น ส่งเสริม การเคลื่อนไหวร่างกาย การบริโภคผักผลไม้ ปรับช่วงเวลาและคุณภาพการนอน โดยใช้งาน 2 สัปดาห์ พบว่าให้ผลลัพธ์ดีขึ้นอย่างมีนัยสำคัญทางสถิติ<sup>4</sup> สุกัค วงศ์วรสันต์ และคณะ (2023) ใช้ chatbot ให้ความรู้การดูแลสุขภาพช่องปากกับผู้สูงอายุ 2 สัปดาห์ พบว่ามีคะแนนเฉลี่ยเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติเช่นกัน<sup>5</sup>

จากการศึกษา Pithpornchayakul และคณะ (2022) มีการพัฒนา chatbot จากแอปพลิเคชันเฟซบุ๊ก พบว่า มีข้อจำกัดเรื่อง

ระบบไม่สามารถส่งข้อความต่อเนื่อง<sup>6</sup> ดังนั้น หากปรับคุณสมบัติและความเสถียรของ chatbot และเพิ่มช่องทางติดต่ออื่น ๆ เช่น แอปพลิเคชันไลน์ ร่วมกับคุณสมบัติอื่น ๆ ที่แตกต่าง<sup>7</sup> เพื่อเป็นทางเลือกให้ผู้ใช้งานลดเวลาและเลือกใช้งานตามสะดวก แต่คงความรู้ที่จำเป็น การพัฒนา chatbot ระยะสั้นจึงเลือกแอปพลิเคชันไลน์เพื่อให้ระบบเสริมมากขึ้น เข้าถึงผู้ใช้งานได้โดยตรง เป็นอีกหนึ่งในการสร้างเสริมสุขภาพช่องปาก ที่สอดคล้องกับบริบทในปัจจุบัน ซึ่งยังไม่มีการศึกษาเปรียบเทียบ การเปลี่ยนแปลงความรู้ ทัศนคติ และการปฏิบัติในการดูแลสุขภาพช่องปากเด็กที่เกิดจากการใช้งาน chatbot ระยะสั้นที่ผู้ใช้งานสามารถเลือกระยะเวลาการใช้งานได้ด้วยตนเอง การศึกษานี้จึงมีวัตถุประสงค์เพื่อเปรียบเทียบความรู้ ทัศนคติ การปฏิบัติในการดูแลสุขภาพช่องปากเด็ก และความพึงพอใจของผู้ดูแลเด็กระหว่างการใช้ chatbot ที่ต้องใช้งานต่อเนื่อง 21 วันและระยะสั้น

## วัสดุอุปกรณ์และวิธีการ

การศึกษานี้เป็น Quasi-experimental design (pre-test and post-test) ประชากร คือ ผู้ปกครองของเด็กที่มีอายุ 2 – 5 ปี ในเขตเมือง จังหวัดสงขลา มีเกณฑ์คัดเข้า คือ โรงเรียนเอกชนขนาดใหญ่ ในเขตเมือง จังหวัดสงขลา 2 โรงเรียนและสูมอย่างจ่ายเข้าสู่กลุ่มทดลอง chatbot ใช้งานต่อเนื่อง 21 วันและระยะสั้น ผู้ปกครอง

ที่มีความสามารถใช้สมาร์ทโฟนตลอดเวลาที่ศึกษาไม่เป็นทันบุคลากร ไม่เคยใช้ chatbot ที่ใช้งานต่อเนื่อง 21 วัน ไม่มีเด็กที่ดูแลกำลังศึกษาทั้ง 2 สถาบันที่เข้าร่วมเป็นกลุ่มตัวอย่างของการศึกษาครั้งนี้

คำนวณขนาดกลุ่มตัวอย่างด้วยโปรแกรม G Power 3.1 กำหนดให้ effect size มีขนาด 0.4,  $\alpha$  เป็น 0.05 power ( $1 - \beta$ ) เป็น 0.8 ขนาดกลุ่มตัวอย่างสูงหมายร้อยละ 15 ต่อกลุ่ม<sup>6</sup> ได้กลุ่มตัวอย่างทั้งหมด 236 คน แบ่งเป็นกลุ่มละ 118 คน

#### ขั้นตอนการสร้าง Chatbot และเครื่องมือในงานวิจัย

จัดทำ chatbot ระยะสั้น ให้ความรู้การดูแลสุขภาพช่องปาก เด็กก่อนวัยเรียนตามทฤษฎี Protection motivation theory (PMT) โดยมีเนื้อหาใกล้เคียงกับ chatbot ใช้งานต่อเนื่อง 21 วันและมีจำนวนข้อความน้อยกว่า และผู้ใช้งานสามารถเลือกเองได้ว่าจะใช้งานต่อเนื่องหรือพักการใช้งาน และจะใช้งานจนจบภายในระยะเวลาเท่าใด ตามที่สอดคล้องให้ผู้ทรงคุณวุฒิ 3 คนตรวจสอบความตรงเชิงเนื้อหา ด้วยวิธี Index of Item-Objective Congruence (IOC) ค่า IOC มากกว่า 0.5 คิดเป็นร้อยละ 97 และปรับปรุงตามคำแนะนำผู้ใช้ช่วยจากนั้นนำ chatbot ทดลองใช้ในกลุ่มตัวอย่างที่ลักษณะคล้ายคลึงกับกลุ่มตัวอย่างงานวิจัยจำนวน 30 คน เพื่อปรับปรุง chatbot

กลุ่ม chatbot ใช้งานต่อเนื่อง 21 วัน ใช้ chatbot 21 วัน พันธีจากงานวิจัย Pithpornchaiyakul และคณะ (2022)<sup>6</sup> แบบสอบถามปรับปรุงจากงานวิจัย Pithpornchaiyakul และคณะ (2022)<sup>6</sup> ประกอบด้วยข้อมูลความรู้ 9 ข้อ ตอบถูกได้ 1 คะแนน ตอบผิดหรือไม่แน่ใจได้ 0 คะแนน ข้อมูลพฤติกรรมดูแลสุขภาพช่องปาก แบ่งเป็นพฤติกรรมทานอาหารและพฤติกรรมการดูแลสุขภาพช่องปาก พฤติกรรมทานอาหารมี 4 ข้อและพฤติกรรมการดูแลสุขภาพช่องปาก มี 5 ข้อ หากพฤติกรรมเหมาะสมได้ 1 คะแนน ไม่เหมาะสมได้ 0 คะแนน ข้อมูลทัศนคติมี 15 ข้อ โดยทัศนคติเชิงบวกได้ 3 คะแนน ทัศนคติเป็นกลางได้ 2 คะแนน และทัศนคติเชิงลบได้ 1 คะแนน ประเมินความตรง (IOC) ของเครื่องมือการวิจัยโดยผู้ทรงคุณวุฒิ 3 ท่าน ทุกค่ามาได้ค่า IOC มากกว่า 0.5 และทดสอบค่า Reliability จากกลุ่มตัวอย่างที่ลักษณะคล้ายคลึงกับกลุ่มตัวอย่างงานวิจัยจำนวน 30 คน Cronbach's Alpha เป็น 0.79

กลุ่มตัวอย่างใช้งานต่อเนื่อง 21 วัน เพิ่มเพื่อนผ่านแอปพลิเคชันเฟซบุ๊ก ทำแบบสอบถามก่อนใช้งานและเริ่มใช้งานโดยจะมีข้อความส่งสั้น ๆ ต่อเนื่อง 21 วัน เมื่อถึงข้อความชุดสุดท้ายระบบจะส่งแบบสอบถามหลังใช้งาน ส่วนกลุ่มตัวอย่าง chatbot ระยะสั้น เพิ่มเพื่อนผ่านแอปพลิเคชันไลน์ ทำแบบสอบถามก่อนใช้งานและเริ่มใช้งาน ซึ่งสามารถใช้งานตามความสะดวกของผู้ใช้งานและระบบจะส่งแบบสอบถามหลังใช้งานหลังข้อความชุดสุดท้าย 7 วัน

วิเคราะห์ข้อมูลที่ได้ด้วยสถิติเชิงพรรณนา เพื่อเชิญลักษณะที่ไปของกลุ่มตัวอย่าง และใช้สถิติ Independent sample

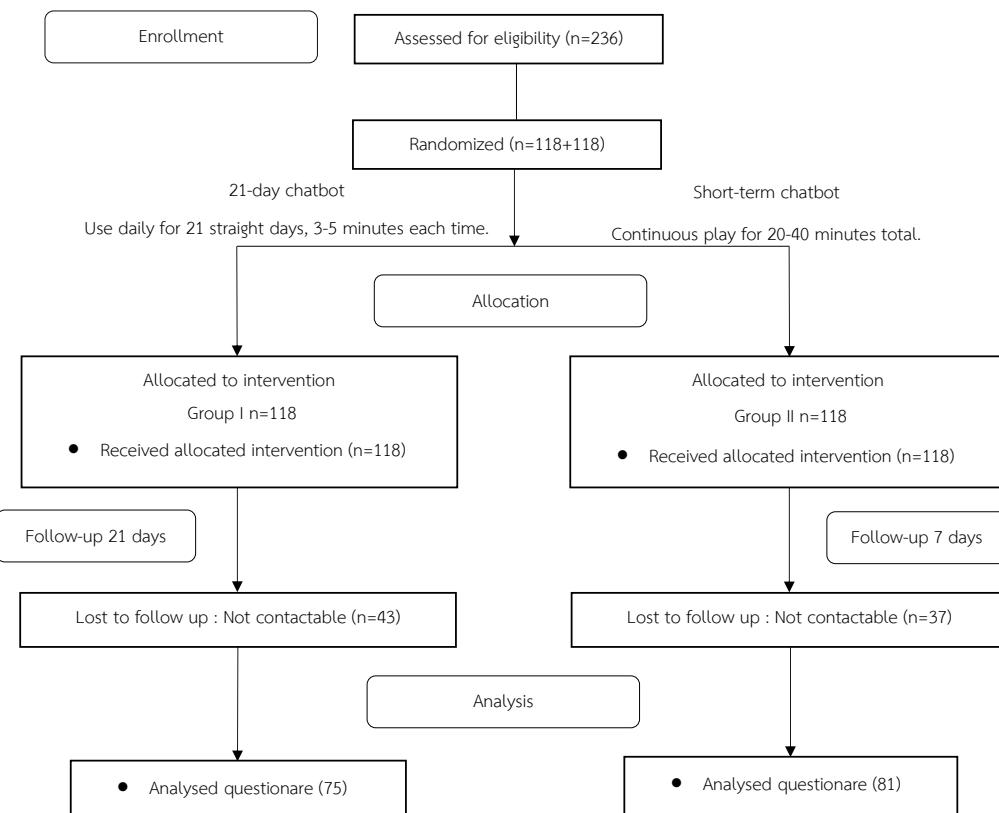
T-test เปรียบเทียบค่าเฉลี่ยระหว่าง 2 กลุ่มตัวอย่าง และเปรียบเทียบค่าเฉลี่ยผลต่างก่อน – หลังระหว่างกลุ่ม และ Chi-square test เพื่อเปรียบเทียบค่าสัดส่วนระหว่างกลุ่ม

โครงการวิจัยได้ผ่านการพิจารณาและได้รับการรับรองจากคณะกรรมการจิริธรรมการวิจัยในมนุษย์ คณะทันตแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ รหัสโครงการ EC6704-201 เมื่อวันที่ 27 กันยายน 2567

#### ผลการศึกษา

กลุ่มตัวอย่างทั้งหมด 236 คน แบ่งออกเป็น 2 กลุ่ม กลุ่มละ 118 คน กลุ่มใช้งานต่อเนื่อง 21 วันและใช้งานระยะสั้น มีผู้ตอบแบบสอบถามไม่ครบหรือติดต่อไม่ได้จำนวน 43 และ 37 คน คิดเป็นร้อยละ 36.4 และ 31.4 ตามลำดับ ทำให้กลุ่มตัวอย่างในการวิเคราะห์ข้อมูลมีจำนวน 75 คน และ 81 คน ตามลำดับ (รูปที่ 1)

ข้อมูลที่ไปของกลุ่มตัวอย่าง ได้แก่ อายุ ความสัมพันธ์ ของผู้ใช้งานกับเด็ก จำนวนเด็กในความดูแล และประสบการณ์ได้รับคำแนะนำการดูแลสุขภาพช่องปากเด็กไม่แตกต่างกัน โดยผู้ดูแลส่วนใหญ่เป็นแม่ จำนวนเด็กในความดูแลประมาณ 2 คน และส่วนใหญ่เด็กได้รับคำแนะนำการดูแลสุขภาพช่องปากเด็ก


ขณะที่อายุ การศึกษา และรายได้ของผู้ใช้งาน มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติระหว่าง 2 กลุ่ม โดยพบว่า กลุ่มใช้งานต่อเนื่อง 21 วัน มีอายุ การศึกษา และรายได้สูงกว่า กลุ่มระยะสั้น (ตารางที่ 1)

คะแนนความรู้ทั้ง 2 กลุ่มก่อนการศึกษาไม่แตกต่างกัน เมื่อพิจารณาข้อมูลพบว่า ความรู้เรื่องการใช้ฟลูออร์ด กลุ่มใช้งานต่อเนื่อง 21 วันมีผู้ที่ตอบถูกต้องในหัวข้อนี้มากกว่ากลุ่มระยะสั้น อย่างมีนัยสำคัญทางสถิติ ( $P$ -value = 0.012)

หลังการศึกษา คะแนนความรู้ทั้ง 2 กลุ่มแตกต่างกันอย่างมีนัยสำคัญทางสถิติ ( $P$ -value < 0.001) โดยกลุ่มใช้งานต่อเนื่อง 21 วัน มีคะแนนมากกว่ากลุ่มระยะสั้น ซึ่งมีคะแนน  $6.8 \pm 1.6$  และ  $5.2 \pm 1.8$  ตามลำดับ โดยหัวข้ออยู่ที่กลุ่ม ใช้งานต่อเนื่อง 21 วัน มีความรู้เพิ่มขึ้นแตกต่างอย่างมีนัยสำคัญทางสถิติ คือ วิธีแปรรูป และการใช้ฟลูออร์ (ตารางที่ 2)

คะแนนรวมทัศนคติทั้ง 2 กลุ่ม มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติก่อนเริ่มการศึกษา จึงเปรียบเทียบผลต่างที่เกิดขึ้นพบว่ากลุ่มใช้งานต่อเนื่อง 21 วัน และระยะสั้น มีคะแนนเพิ่มขึ้นเป็น  $2.9 \pm 4.6$  และ  $2.0 \pm 4.4$  ตามลำดับ ( $P$ -value = 0.216) พิจารณารายข้อ พบว่าไม่แตกต่างกันทั้งเรื่องการเลี้ยงดู การแปรรูป การจัดการเด็กที่ไม่ให้ความร่วมมือในการแปรรูป และการให้คำแนะนำผู้อื่น (ตารางที่ 2 และ 4)

### Consort flow of the project



รูปที่ 1 แผนภาพกราฟแสดงข้อมูลของการศึกษา

Figure 1 Flow diagram of the trial

ตารางที่ 1 ข้อมูลทั่วไป

Table 1 General Information

| General Information                          | 21 Days<br>n (%)            | Short-term<br>n (%)         | P-value* |
|----------------------------------------------|-----------------------------|-----------------------------|----------|
| <b>Relationship to the child</b>             |                             |                             |          |
| Mother                                       | 68 (90.7)                   | 68 (84.0)                   |          |
| Father                                       | 4 (5.3)                     | 10 (12.3)                   | 0.271    |
| Grandmother, Grandfather, Uncle, Aunt, Other | 3 (4.0)                     | 3 (3.6)                     |          |
| <b>Caregiver's age</b>                       |                             |                             |          |
| Mean $\pm$ SD (Min – Max)                    | 37.0 $\pm$ 5.8<br>(25 - 53) | 33.7 $\pm$ 6.1<br>(16 - 49) | 0.001    |
| <b>Highest level of education</b>            |                             |                             |          |
| Primary school, Secondary school or lower    | 8 (10.7)                    | 32 (39.5)                   |          |
| Diploma/Higher vocational certificate        | 2 (2.7)                     | 9 (11.1)                    | <0.001   |
| Bachelor's degree                            | 56 (74.7)                   | 34 (42.0)                   |          |
| Higher than bachelor's degree                | 9 (12.0)                    | 3 (3.7)                     |          |
| <b>Family's income compared to expenses</b>  |                             |                             |          |
| Insufficient                                 | 1 (1.3)                     | 8 (9.9)                     |          |
| Sufficient but no savings                    | 14 (18.7)                   | 34 (42.0)                   | <0.001   |
| Sufficient with savings                      | 49 (65.3)                   | 26 (32.1)                   |          |

ตารางที่ 1 ข้อมูลทั่วไป (ต่อ)

Table 1 General Information (cont.)

| General Information                                                                            | 21 Days<br>n (%) | Short-term<br>n (%) | P-value*     |
|------------------------------------------------------------------------------------------------|------------------|---------------------|--------------|
| <b>Occupation</b>                                                                              |                  |                     |              |
| Housewife/Househusband or Unemployed                                                           | 10 (13.3)        | 11 (14.3)           |              |
| Company employee, Government officer                                                           | 42 (56.0)        | 34 (44.2)           | 0.053        |
| General contractor                                                                             | 5 (6.7)          | 17 (22.1)           |              |
| Merchant/Business owner                                                                        | 18 (24.0)        | 15 (19.5)           |              |
| <b>Total number of children currently under care Mean ± SD</b>                                 | <b>1.8 ± 0.6</b> | <b>1.8 ± 0.7</b>    | <b>0.603</b> |
| <b>Receiving guidance about teaching tooth brushing or oral health care for young children</b> |                  |                     |              |
| Yes                                                                                            | 51 (68.0)        | 46 (56.8)           | 0.149        |
| No                                                                                             | 24 (32.0)        | 35 (43.2)           |              |

\* Use Chi-square for comparing the proportion and use T-test for comparing mean

ตารางที่ 2 เปรียบเทียบร้อยละของผู้ที่ตอบคำถูกต้องและมีทัศนคติเชิงบวกระหว่างผู้ใช้งาน chatbot 2 กลุ่มก่อนและหลังใช้งาน

Table 2 Compare the percentage of correct answers and positive attitudes between 2 groups of chatbot users before and after usage

| Questionnaires                                                         | Pretest          |                     |              | Posttest         |                     |                  |
|------------------------------------------------------------------------|------------------|---------------------|--------------|------------------|---------------------|------------------|
|                                                                        | 21 Days<br>n (%) | Short-term<br>n (%) | P-<br>value* | 21 Days<br>n (%) | Short-term<br>n (%) | P-<br>value*     |
| <b>Knowledge</b>                                                       |                  |                     |              |                  |                     |                  |
| The initial caries is white spot                                       | 43 (57.3)        | 46 (56.8)           | 0.945        | 63 (84.0)        | 59 (72.8)           | 0.893            |
| Children should brush at least twice a day.                            | 61 (81.3)        | 62 (76.5)           | 0.464        | 71 (94.7)        | 58 (71.6)           | 0.089            |
| Toothbrushes should have medium bristles.                              | 66 (88.0)        | 69 (85.2)           | 0.607        | 67 (89.3)        | 64 (79.0)           | 0.656            |
| Brushing technique for children is horizontal scrub.                   | 14 (18.7)        | 13 (16.0)           | 0.666        | 28 (37.3)        | 8 (9.9)             | <0.001           |
| Lying down is fine position for child brushing.                        | 28 (37.3)        | 29 (35.8)           | 0.672        | 35 (46.7)        | 23 (28.4)           | 0.105            |
| Must pull the cheek aside while brushing.                              | 44 (58.7)        | 41 (50.6)           | 0.313        | 67 (89.3)        | 54 (66.7)           | 0.109            |
| It's necessary to remove toothpaste foam.                              | 44 (58.7)        | 42 (51.9)           | 0.393        | 54 (72.0)        | 51 (63.0)           | 0.859            |
| Children can use fluoride toothpaste even can't rinse yet.             | 37 (49.3)        | 24 (29.6)           | 0.012        | 55 (73.3)        | 35 (43.2)           | 0.007            |
| Children shouldn't fall asleep during feeding time.                    | 63 (84.0)        | 64 (79.0)           | 0.424        | 66 (88.0)        | 66 (81.5)           | 0.260            |
| <b>Overall knowledge (Mean ± SD)</b>                                   | <b>5.3 ± 1.8</b> | <b>4.8 ± 1.7</b>    | <b>0.071</b> | <b>6.8 ± 1.6</b> | <b>5.2 ± 1.8</b>    | <b>&lt;0.001</b> |
| <b>Min – Max (0 – 9)</b>                                               |                  |                     |              |                  |                     |                  |
| <b>Attitude</b>                                                        |                  |                     |              |                  |                     |                  |
| Caries in primary teeth is normal.                                     | 39 (52.0)        | 29 (35.8)           | 0.116        | 62 (82.6)        | 40 (49.4)           | <0.001           |
| Dental caries doesn't affect other parts of the body.                  | 53 (64.2)        | 44 (58.7)           | 0.083        | 66 (88.0)        | 56 (69.1)           | 0.002            |
| Primary decay isn't serious because permanent teeth will replace.      | 59 (78.7)        | 52 (64.2)           | 0.137        | 75 (100.0)       | 53 (65.4)           | <0.001           |
| Several cavities in children are not life-affecting.                   | 63 (84.0)        | 64 (79.0)           | 0.082        | 71 (94.7)        | 65 (80.2)           | 0.023            |
| Cavities result in pain and behavioral changes in children.            | 61 (81.3)        | 56 (69.1)           | 0.222        | 59 (78.7)        | 60 (74.0)           | 0.616            |
| Sticky yellow film on teeth is milk residue and doesn't need brushing. | 70 (93.3)        | 66 (81.5)           | 0.077        | 72 (96.0)        | 68 (83.9)           | 0.044            |
| Brushing is unnecessary when only 1-2 teeth are present.               | 68 (90.7)        | 69 (85.2)           | 0.555        | 69 (92.0)        | 72 (88.9)           | 0.723            |
| If you don't have time or the child is crying, you can skip brushing.  | 68 (90.7)        | 67 (82.7)           | 0.293        | 72 (96.0)        | 72 (88.8)           | 0.211            |
| Stop brushing immediately if your child's gums bleed.                  | 41 (54.7)        | 25 (30.9)           | 0.009        | 68 (90.7)        | 51 (62.9)           | <0.001           |

ตารางที่ 2 เปรียบเทียบร้อยละของผู้ที่ตอบคำถูกต้องและมีทัศนคติเชิงบวกระหว่างผู้ใช้งาน chatbot 2 กลุ่มก่อนและหลังใช้งาน (ต่อ)

Table 2 Compare the percentage of correct answers and positive attitudes between 2 groups of chatbot users before and after usage (cont.)

| Questionnaires                                                               | Pretest          |                     |              | Posttest         |                     |              |
|------------------------------------------------------------------------------|------------------|---------------------|--------------|------------------|---------------------|--------------|
|                                                                              | 21 Days<br>n (%) | Short-term<br>n (%) | P-<br>value* | 21 Days<br>n (%) | Short-term<br>n (%) | P-<br>value* |
| Brushing teeth in young children is too difficult for you to manage.         | 61 (81.4)        | 60 (74.1)           | 0.399        | 72 (96.0)        | 64 (79.0)           | 0.014        |
| You can brush your child's teeth even if they cry or others say stop.        | 45 (60.0)        | 43 (83.1)           | 0.678        | 55 (73.4)        | 49 (60.5)           | 0.053        |
| You can brush your child's teeth even if they don't cooperate.               | 53 (70.6)        | 46 (56.8)           | 0.200        | 60 (80.0)        | 50 (61.7)           | 0.013        |
| You can't decide whether your child's teeth are clean after brushing or not. | 44 (58.6)        | 39 (38.2)           | 0.327        | 62 (82.7)        | 45 (55.5)           | 0.002        |
| You can advise about brushing children's teeth.                              | 32 (42.7)        | 37 (45.7)           | 0.796        | 52 (69.4)        | 48 (59.3)           | 0.111        |
| When first tooth appear must stop night feeding.                             | 30 (40.0)        | 25 (30.8)           | 0.464        | 49 (65.3)        | 32 (39.5)           | <0.001       |
| <b>Overall Attitude (Mean <math>\pm</math> SD)</b>                           |                  |                     |              |                  |                     |              |
| <b>Min – Max (15 – 45)</b>                                                   | 38.2 $\pm$ 4.4   | 35.6 $\pm$ 4.7      | <0.001       | 41.1 $\pm$ 3.7   | 37.8 $\pm$ 4.7      | <0.001       |

\*Use Chi-square for comparing the proportion and use T-test for comparing mean

คะแนนรวมพฤติกรรมก่อนใช้งานทั้ง 2 กลุ่มแตกต่างกันอย่างมีนัยสำคัญทางสถิติ จึงเปรียบเทียบผลต่างก่อนและหลังใช้งาน พบว่าผลต่างที่เกิดขึ้นแตกต่างกันอย่างมีนัยสำคัญทางสถิติ โดยกลุ่มใช้งานต่อเนื่อง 21 วัน และระยะสั้น มีคะแนนเพิ่มขึ้น  $1.1 \pm 2.0$  และ  $0.4 \pm 2.4$  ตามลำดับ ( $P$ -value = 0.041)

พฤติกรรมในการศึกษาทั้ง 2 กลุ่มออกเป็นพฤติกรรมการทานอาหารและการดูแลสุขภาพช่องปาก ในส่วนพฤติกรรมการทานอาหาร หลังการศึกษาทั้ง 2 กลุ่มมีความแตกต่างกันอย่างมีนัยสำคัญ โดยคะแนนของกลุ่มใช้งานต่อเนื่อง 21 วัน และระยะสั้น เป็น  $2.9 \pm 1.2$  และ  $2.5 \pm 1.5$  ตามลำดับ ( $P$ -value = 0.044) โดยทั้ง 2 กลุ่มมีพฤติกรรมการไม่ดื่มน้ำชาและการไม่ต้มน้ำดื่มน้ำชาต่อนกลางคืนเพิ่มขึ้น โดยค่าสัดส่วนที่เพิ่มขึ้นของทั้ง 2 ประเด็นแตกต่างกัน

อย่างมีนัยสำคัญทางสถิติระหว่าง 2 กลุ่ม ( $P$ -value = 0.038 และ 0.044 ตามลำดับ)

คะแนนรวมพฤติกรรมการดูแลสุขภาพช่องปากมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติก่อนเริ่มการศึกษา โดยกลุ่มใช้งานต่อเนื่อง 21 วันคะแนนสูงกว่าเรื่องผู้ท่าความสะอาดช่องปากเด็ก การไม่ทานอาหารหลังแปรงฟันครั้งสุดท้ายของวันและการใช้ยาสีฟัน ( $P$ -value = 0.001, 0.002 และ 0.001 ตามลำดับ) แต่เมื่อเปรียบเทียบผลต่างก่อนและหลังการใช้งาน พบว่าไม่มีความแตกต่างอย่างมีนัยสำคัญทางสถิติ โดยกลุ่มใช้งานต่อเนื่อง 21 วัน และระยะสั้น มีคะแนนเพิ่มขึ้น  $0.8 \pm 1.7$  และ  $0.3 \pm 2.2$  ตามลำดับ (ตารางที่ 3 และ 4)

ตารางที่ 3 เปรียบเทียบร้อยละของผู้ที่ตอบคำถูกต้องพูดถึงการดูแลสุขภาพช่องปากที่เหมาะสมระหว่าง 2 กลุ่ม ก่อนและหลังใช้งาน

Table 3 Compare the percentage of users with good oral health care behavior between 2 groups before and after

| Questionnaires                                                                            | Pretest          |                     |              | Posttest         |                     |              |
|-------------------------------------------------------------------------------------------|------------------|---------------------|--------------|------------------|---------------------|--------------|
|                                                                                           | 21 Days<br>n (%) | Short-term<br>n (%) | P-<br>value* | 21 Days<br>n (%) | Short-term<br>n (%) | P-<br>value* |
| <b>Dietary Behaviors</b>                                                                  |                  |                     |              |                  |                     |              |
| The frequency of a child's breast or other milk consumption from a bottle per day         |                  |                     |              |                  |                     |              |
| No                                                                                        | 28 (37.3)        | 31 (38.3)           |              | 43 (57.3)        | 33 (40.7)           |              |
| At least once per day                                                                     | 47 (62.7)        | 50 (61.7)           | 0.904        | 32 (42.7)        | 48 (59.3)           | 0.038        |
| The frequency of a child's sugary drinks or fruit juice consumption from a bottle per day |                  |                     |              |                  |                     |              |
| No                                                                                        | 41 (54.7)        | 50 (61.7)           |              | 50 (66.7)        | 53 (65.4)           |              |
| At least once per day                                                                     | 34 (45.3)        | 31 (38.3)           | 0.371        | 25 (33.3)        | 28 (34.6)           | 0.871        |

ตารางที่ 3 เปรียบเทียบร้อยละของผู้ที่ตอบคำว่ามีพฤติกรรมการดูแลสุขภาพช่องปากที่เหมาะสมระหว่าง 2 กลุ่ม ก่อนและหลังใช้งาน (ต่อ)

Table 3 Compare the percentage of users with good oral health care behavior between 2 groups before and after (cont.)

| Questionnaires                                                                                  | Pretest          |                     |              | Posttest         |                     |              |
|-------------------------------------------------------------------------------------------------|------------------|---------------------|--------------|------------------|---------------------|--------------|
|                                                                                                 | 21 Days<br>n (%) | Short-term<br>n (%) | P-<br>value* | 21 Days<br>n (%) | Short-term<br>n (%) | P-<br>value* |
| Number of days per week that the child falls asleep with a milk bottle at night                 |                  |                     |              |                  |                     |              |
| No                                                                                              | 63 (84.0)        | 55 (67.9)           | 0.019        | 62 (82.7)        | 57 (70.4)           | 0.071        |
| At least once per day                                                                           | 12 (16.0)        | 26 (32.1)           |              | 13 (17.3)        | 24 (29.6)           |              |
| Number of days per week that child wakes up to drink from a milk bottle during sleep            |                  |                     |              |                  |                     |              |
| No                                                                                              | 63 (84.0)        | 56 (69.1)           | 0.029        | 63 (84.0)        | 57 (70.4)           | 0.044        |
| At least once per day                                                                           | 12 (16.0)        | 25 (30.9)           |              | 12 (16.0)        | 24 (29.6)           |              |
| Overall Dietary Behaviors (Mean ± SD)                                                           | 2.6 ± 1.3        | 2.4 ± 1.5           | 0.302        | 2.9 ± 1.2        | 2.5 ± 1.5           | 0.044        |
| Min – Max (0 – 4)                                                                               |                  |                     |              |                  |                     |              |
| <b>Oral hygiene Care</b>                                                                        |                  |                     |              |                  |                     |              |
| Person who brushes the child's teeth                                                            |                  |                     |              |                  |                     |              |
| - Child                                                                                         | 11 (14.7)        | 31 (38.2)           | 0.001        | 5 (6.7)          | 26 (32.1)           | <0.001       |
| - Caregiver                                                                                     | 64 (85.3)        | 50 (61.7)           |              | 70 (93.3)        | 55 (67.9)           |              |
| Number of days per week that you brush the child's teeth                                        |                  |                     |              |                  |                     |              |
| Not every day                                                                                   | 11 (17.2)        | 8 (16.0)            | 0.866        | 3 (4.3)          | 10 (18.2)           | 0.012        |
| Every day                                                                                       | 53 (82.8)        | 42 (84.0)           |              | 67 (95.7)        | 45 (81.8)           |              |
| Drinking milk, eating snacks, or consuming other foods after brushing teeth before going to bed |                  |                     |              |                  |                     |              |
| Eat                                                                                             | 28 (37.8)        | 29 (35.8)           | 0.002        | 10 (13.3)        | 27 (33.3)           | <0.001       |
| Not eat                                                                                         | 35 (47.3)        | 21 (25.9)           |              | 60 (80.0)        | 28 (34.6)           |              |
| Children using toothpaste                                                                       |                  |                     |              |                  |                     |              |
| No                                                                                              | 0 (0.0)          | (0.0)               | 0.001        | 0 (0.0)          | 1 (1.2)             | <0.001       |
| Yes                                                                                             | 64 (85.3)        | 50 (61.7)           |              | 70 (93.3)        | 54 (66.7)           |              |
| Toothpaste forms used for children                                                              |                  |                     |              |                  |                     |              |
| Contains fluoride                                                                               | 62 (96.9)        | 46 (92.0)           | 0.247        | 70 (100)         | 48 (87.3)           | 0.002        |
| No fluoride                                                                                     | 2 (3.1)          | 4 (8.0)             |              | 0 (0)            | 7 (12.7)            |              |
| Overall Oral hygiene care (Mean ± SD)                                                           | 3.7 ± 1.7        | 2.6 ± 2.1           | <0.001       | 4.5 ± 1.3        | 2.8 ± 2.1           | <0.001       |
| Min – Max (0 – 5)                                                                               |                  |                     |              |                  |                     |              |
| Overall Oral Behaviors (Mean ± SD)                                                              | 6.3 ± 2.2        | 5.0 ± 2.8           | 0.001        | 7.4 ± 1.8        | 5.3 ± 2.7           | <0.001       |
| Min – Max (0 – 9)                                                                               |                  |                     |              |                  |                     |              |

\*Use Chi-square for comparing the proportion and use T-test for comparing mean

ตารางที่ 4 ความแตกต่างคะแนนพฤติกรรมและทัศนคติก่อนและหลังการใช้งานระหว่าง 2 กลุ่ม

Table 4 Difference in behavioral and attitude scores after and before usage between 2 groups

| Different score (Mean ± SD)         | 21 Days<br>(Post-pre)<br>Different      | Short-term<br>(Post-pre)<br>Different   | P-value* |
|-------------------------------------|-----------------------------------------|-----------------------------------------|----------|
|                                     |                                         |                                         |          |
| Different Overall Oral hygiene care | (4.5 ± 1.3 - 3.7 ± 1.7 )<br>0.8 ± 1.7   | (2.8 ± 2.1- 2.6 ± 2.1)<br>0.3 ± 2.2     | 0.092    |
| Different Oral behaviors            | (7.4 ± 1.8 - 6.3 ± 2.2)<br>1.1 ± 2.0    | (5.3 ± 2.7 - 5.0 ± 2.8)<br>0.4 ± 2.4    | 0.041    |
| Different Overall attitude          | (41.1 ± 3.7 - 38.2 ± 4.4 )<br>2.9 ± 4.6 | (37.8 ± 4.7 - 35.6 ± 4.7 )<br>2.0 ± 4.4 | 0.216    |

\*Use T-test for comparing mean

ความพึงพอใจโดยรวมแตกต่างกันอย่างมีนัยสำคัญทางสถิติระหว่าง 2 กลุ่ม โดยกลุ่มใช้งานต่อเนื่อง 21 วันมีความพึงพอใจมากกว่ากลุ่มระยะสั้น ในเรื่องความง่ายในการใช้งาน สื่อเข้าใจง่าย

ตารางที่ 5 เปรียบเทียบความพึงพอใจระหว่างผู้ใช้งาน chatbot 2 กลุ่ม

Table 5 Compare satisfaction between 2 groups of chatbot users

| Satisfaction                                                                                   | Mean             |                  | P-value*     |
|------------------------------------------------------------------------------------------------|------------------|------------------|--------------|
|                                                                                                | 21 Days          | Short-term       |              |
| Easy to use or interact with                                                                   | 4.2 ± 1.0        | 3.6 ± 1.0        | <0.001       |
| Media such as text, videos, and images are easy to understand.                                 | 4.4 ± 0.8        | 4.0 ± 0.8        | <0.001       |
| Information is reliable.                                                                       | 4.5 ± 0.8        | 4.2 ± 0.6        | 0.007        |
| Conversation style is friendly and easy to understand.                                         | 4.4 ± 0.9        | 4.0 ± 0.8        | 0.002        |
| When you use the chatbot, you feel like you're talking to a real doctor.                       | 4.2 ± 1.0        | 3.9 ± 0.8        | 0.061        |
| Provides encouragement in caring for children                                                  | 4.4 ± 0.8        | 4.0 ± 0.8        | 0.007        |
| Content is appropriately sequenced, making it easy to understand.                              | 4.4 ± 0.8        | 4.0 ± 0.7        | 0.014        |
| The chatbot makes you want to brush children's teeth.                                          | 4.4 ± 0.8        | 4.0 ± 0.9        | 0.004        |
| You can learn how to brush children's teeth from images or videos in the chatbot.              | 4.5 ± 0.8        | 4.0 ± 0.9        | <0.001       |
| The chatbot makes you confident in brushing children's teeth.                                  | 4.4 ± 0.9        | 4.1 ± 0.8        | 0.053        |
| Chatbots can help you stop children's bottle-drinking behavior.                                | 4.5 ± 0.8        | 4.3 ± 0.8        | 0.050        |
| The information received from chatbots is useful and can be practically applied to daily life. | 4.2 ± 1.0        | 3.9 ± 0.9        | 0.114        |
| <b>Overall satisfaction</b>                                                                    | <b>4.4 ± 0.9</b> | <b>4.1 ± 1.1</b> | <b>0.033</b> |

\*Use T-test for comparing mean

พฤติกรรมการใช้งานของกลุ่มใช้งานต่อเนื่อง 21 วันมีจำนวนผู้ใช้งานจบเนื้อหาร้อยละ 52.8 โดยกลุ่มผู้ใช้งานไม่จบร้อยละ 47.2 ส่วนใหญ่ใช้งานจบเพียงวันแรกเท่านั้น สำหรับพฤติกรรมการใช้งานกลุ่มระยะสั้น มีผู้ที่ใช้งานจบเนื้อหาร้อยละ 82.7

## บทวิจารณ์

ลักษณะทั่วไปของประชากร ได้แก่ อาชีพ ความสัมพันธ์ของผู้ใช้งานกับเด็ก จำนวนเด็กในความดูแล และประสบการณ์ได้รับคำแนะนำการดูแลสุขภาพของปากเด็กของทั้งสองกลุ่มในการศึกษาไม่แตกต่างกัน และคล้ายคลึงกับหลักการศึกษาในประเทศไทย โดยผู้ดูแลส่วนใหญ่เป็นแม่เข่นเดียวแก่น<sup>6,8-11</sup>

ขณะที่อายุ การศึกษา และรายได้ของผู้ใช้งาน มีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ โดยพบว่ากลุ่มใช้งานต่อเนื่อง 21 วัน มีอายุ การศึกษา และรายได้สูงกว่ารวมถึงอาชีพแตกต่างจากกลุ่มระยะสั้น โดยค่าเฉลี่ยอายุของกลุ่มระยะสั้น เท่ากับ 33.7 ปี ใกล้เคียงกับการศึกษาอื่น ๆ<sup>6,8,9</sup> ขณะที่อายุของกลุ่มใช้งานต่อเนื่อง 21 วัน มีอายุเฉลี่ย 37 ปี สูงกว่าหลักการศึกษาที่ผ่านมา

หลังการศึกษา กลุ่มใช้งานต่อเนื่อง 21 วันมีความรู้มากกว่ากลุ่มระยะสั้น อาจมีสาเหตุจาก chatbot ใช้งานต่อเนื่อง 21 วัน มีการให้ความรู้แบบสั้น ๆ วันละ 1-2 หัวข้อ ทำให้ผู้ใช้งานได้รับความรู้ที่ลับน้อยและมีเวลาประมวลผลข้อมูล ในขณะที่ chatbot ระยะสั้น

ข้อมูลน่าเชื่อถือ ภาษาเป็นกันเองเข้าใจง่าย มีข้อความให้กำลังใจ การเรียงลำดับเนื้อหาเหมาะสม และการนำความรู้ไปใช้งานได้จริง (ตารางที่ 5)

ผู้ใช้งานบางกลุ่มอาจเลือกเล่นทั้งหมดในครั้งเดียว ทำให้ไม่สามารถจำข้อมูลทุกอย่าง เป็นผลให้ความรู้ของกลุ่มระยะสั้นน้อยกว่ากลุ่มใช้งานต่อเนื่อง 21 วัน นอกจากนี้การที่กลุ่มใช้งานต่อเนื่อง 21 วัน มีระดับการศึกษาสูงกว่ากลุ่มระยะสั้น ก็อาจส่งผลต่อความรู้ที่เพิ่มขึ้น เช่นกัน การศึกษาของ สุวัต วงศ์รัตน์ และคณะ (2023) พบว่าภายในหลังใช้ chatbot 2 สัปดาห์ ผู้สูงอายุมีคะแนนเฉลี่ยความรู้การดูแลสุขภาพซึ่งปากเพิ่มขึ้นอย่างมีนัยสำคัญทางสถิติ<sup>9</sup> อาจช่วยยืนยันว่าการให้ความรู้ผ่านทาง chatbot ในระยะเวลาที่สั้นกินไป อาจไม่สามารถเพิ่มความรู้ได้ แต่หากใช้ระยะเวลา 2 สัปดาห์ขึ้นไป จะส่งผลให้ความรู้เพิ่มมากขึ้น

การที่ความรู้เรื่องรีปรงฟัน กลุ่มใช้งานต่อเนื่อง 21 วัน มีคะแนนมากกว่า อาจ เพราะเนื้อหาหัวข้อดังกล่าวอยู่ในคลิปวิดีโอที่ส่งไปใน chatbot โดยใช้งานผ่านแอปพลิเคชันเฟซบุ๊ก สามารถเปิดคลิปวิดีโอได้โดยตรงในแอปพลิเคชัน แต่สำหรับ chatbot ระยะสั้น ผู้ใช้งานไม่สามารถเปิดคลิปวิดีโອนไลน์โดยตรง จำเป็นต้องกดลิงก์เพื่อเปิดคลิปวิดีโອนเพจ เฟซบุ๊ก ทำให้มีผู้ใช้งานบางส่วนไม่รับชมคลิปวิดีโອนเนื่องจากยุ่งยากในการออกจากแอปพลิเคชัน ทำให้ผู้ใช้งานดังกล่าวไม่ได้รับความรู้ในหัวข้อนี้

อีกหัวข้อหนึ่งที่กลุ่มใช้งานต่อเนื่อง 21 วันมีคะแนนมากกว่า คือ เรื่องการใช้ฟลูออริด เนื่องจาก chatbot ที่ใช้งานต่อเนื่อง 21 วันมีรูปแบบให้ความรู้ในหัวข้อนี้ผ่านการตอบคำถาม

กรณีผู้ใช้งานตอบผิดจะมีข้อความแสดงข้อเท็จจริงที่ถูกต้อง แต่ chatbot ระยะสั้น ไม่มีการให้ความรู้ในหัวข้อดังกล่าว

พฤติกรรมทั้ง 2 กลุ่มตัวอย่าง พบว่า คะแนนพฤติกรรมโดยรวมมีความแตกต่างกันอย่างมีนัยสำคัญทางสถิติ เนื่องจาก chatbot ที่ใช้งานต่อเนื่อง 21 วันส่งผลต่อความต่างในเรื่องพฤติกรรมการทานอาหาร แต่ไม่ส่งผลต่อเรื่องพฤติกรรมการดูแลสุขภาพซึ่งปากโดยพฤติกรรมการทานอาหารที่แตกต่างกัน ซึ่ง chatbot ที่ใช้งานต่อเนื่อง 21 วันมีแนวโน้มพฤติกรรมที่ดีกว่าในประเด็นการไม่ดื่มน้ำดื่มนมขวดและการไม่ตื่นมาดื่มน้ำดื่มนมขวดตอนกลางคืน

สาเหตุการเปลี่ยนแปลงด้านพฤติกรรม chatbot ระยะสั้น ไม่สามารถสร้างการเปลี่ยนแปลงได้ดีเท่า chatbot ที่ใช้งานต่อเนื่อง 21 วันอาจ เพราะ chatbot ที่ใช้งานต่อเนื่อง 21 วันนำทฤษฎีการเปลี่ยนแปลงพฤติกรรมในระยะเวลา 21 วันมาใช้ จากการศึกษา Ben Singh และคณะ (2024) โดยเฉลี่ยคนเรารู้สึกว่าเวลาประมาณ 21 วันในการสร้างพฤติกรรมใหม่ขึ้น<sup>2</sup> ซึ่งอาจได้ผลในการสร้างพฤติกรรมการดูแลสุขภาพซึ่งปากให้กับกลุ่ม chatbot ที่ใช้งานต่อเนื่อง 21 วัน

การใช้ chatbot ต่อเนื่อง 21 วันและระยะสั้น สามารถเปลี่ยนแปลงทัศนคติได้โดยมีคะแนนเฉลี่ย 41.1 และ 37.8 คิดเป็นร้อยละ 92.0 และ 84.0 ตามลำดับ จากการศึกษา Baskaradoss JK. และคณะ (2022) เรื่อง Self-efficacy ซึ่งเป็นตัวชี้วัดทัศนคติเชิงบวกของผู้ดูแลเด็กที่ได้รับความรู้ผ่านทันบุคคลากร มีค่าเฉลี่ยเป็น 2.22 คิดเป็นร้อยละ 44.1<sup>12</sup> ซึ่งน้อยกว่าคะแนนหลังใช้งานของทั้ง 2 chatbot ในการศึกษานี้ ดังนั้น การให้ความรู้ผ่าน chatbot ให้ผลการเปลี่ยนแปลงทัศนคติที่ดีกว่าการให้ความรู้ผ่านทันบุคคลากร สอดคล้องกับผลการศึกษาของ chatbot ต่อการเปลี่ยนแปลงทัศนคติของ Zhang, J. และคณะ (2020) ที่กล่าวว่า chatbot สามารถทำให้ผู้คนเปลี่ยนแปลงการรับรู้ของตนเอง<sup>13</sup> และการศึกษา Altay และคณะ (2023) พบว่าการใช้ chatbot เป็นเวลาสั้น สามารถเพิ่มทัศนคติและเจตนาการณ์เชิงบวกต่อการรับรักษา COVID-19 ในประชากรผู้สูงอายุ<sup>14</sup> ดังนั้น chatbot ที่ใช้งานทั้งระยะสั้นและยาวสามารถเปลี่ยนแปลงทัศนคติเชิงบวกได้อย่างใกล้เคียงกัน

ความพึงพอใจการใช้งาน กลุ่มใช้งานต่อเนื่อง 21 วันมีความพึงพอใจมากกว่ากลุ่มระยะสั้น โดยมีคะแนน 8.8 และ 8.2 (ปรับเป็นคะแนนเต็ม 10 คะแนน) ใกล้เคียงกับการศึกษา Hunsrisakhun และคณะ (2024) มีคะแนนเฉลี่ย 8.49 และ chatbot 21 วันพันธ์ และ chatbot 30 วันพันธ์ที่คะแนนเฉลี่ย 9.2 และ 8.6 คะแนนตามลำดับ<sup>6</sup> และสอดคล้องกับ chatbot ของสุกัค วงศ์รุสันต์ และคณะ (2023) ที่คะแนนโดยรวม 9.3 คะแนน<sup>5</sup>

จากการศึกษาโปรแกรมของ chatbot ทั้ง 2 กลุ่มถูกวิเคราะห์ให้ใช้งานตามรูปแบบเท่านั้น หากมีข้อความจากผู้ใช้งานค้นคว้า

สนทนากำหนดให้ chatbot ไม่ส่งข้อความต่อ จึงอาจใช้งานไม่ต่อเนื่อง และไม่พอใจได้ รวมทั้ง chatbot ระยะสั้น ไม่สามารถตอบคิบิวตี้โดยผู้ใช้งานเปิดรับข้อมูลโดยตรงเหมือนกับ chatbot ใช้งานต่อเนื่อง 21 วัน จึงอาจทำให้ผู้ใช้งานบางส่วนเลือกข้ามวิดีโอ ไม่สามารถแปรผันให้เกิดในความดูแล และมองว่าใช้งานยาก ส่งผลให้คุณภาพพื้นที่ของ chatbot ระยะสั้นมีคุณภาพน้อยกว่า

พฤติกรรมการใช้งานพบว่า กลุ่มระยะสั้นใช้งานจนจบกว่ากลุ่มใช้งานต่อเนื่อง 21 วันโดยมีร้อยละ 82.7 และ 52.8 ตามลำดับ โดยใช้งานเฉลี่ย 22.2 นาที พบว่า สามารถเพิ่มความรู้และปรับพฤติกรรมบางอย่างได้ จึงสามารถใช้เป็นทางเลือกในการพัฒนา chatbot ระยะสั้น โดยเลือกประเด็นความรู้หรือทักษะบางประการที่ผู้ใช้งานสามารถเปลี่ยนแปลงได้ในระยะเวลาอันสั้น

จำนวนผู้ใช้งานจนจบของกลุ่มใช้งานต่อเนื่อง 21 วันใกล้เคียงกับการศึกษา Pithpornchaiyakul และคณะ (2023) มีจำนวนผู้ใช้งานครบจนจบร้อยละ 57.9 โดยรูปแบบซักชวนกลุ่มตัวอย่างคล้ายคลึงกัน คือ การแนะนำผ่านช่องทางออนไลน์ให้กลุ่มตัวอย่างใช้งานตามสะดวก ไม่ได้ใช้แจ้งเชิญชวนเป็นรายบุคคล<sup>3</sup> ต่างจากการศึกษา Pithpornchaiyakul และคณะ (2022) Pupong และคณะ (2025) และ Hunsrisakhun และคณะ (2024) ที่เชิญชวนด้วยการอธิบายกระบวนการวิจัยโดยตรงและมีค่าตอบแทนให้ผู้ร่วมวิจัย<sup>6,8,9</sup> ทำให้มีผู้ใช้งานต่อเนื่องจนจบสูงกว่าการศึกษารั้งนี้

จุดแข็งการศึกษานี้ คือ รูปแบบใกล้เคียงกับการใช้งาน chatbot บริบทจริง เนื่องจากเชิญชวนผ่านออนไลน์เท่านั้น ไม่ใช่ทันบุคคลากร และรวมรวมข้อมูลในรูปแบบ self-administered ซึ่งผู้ใช้งานสามารถตอบแบบสอบถามได้อย่างอิสระ ลดการเกิดความล้าเอียงจากผู้สัมภาษณ์ ในการเก็บข้อมูลก่อนและหลังการศึกษา ถือทั้ง ในส่วนของกลุ่มตัวอย่างที่สูญหายไปเป็นจำนวนไม่เท่ากันในกลุ่มใช้งานต่อเนื่อง 21 วัน และ กลุ่มระยะสั้น คิดว่าการที่กลุ่มตัวอย่างในกลุ่มระยะสั้นใช้งานจนจบร้อยละ 82.7 และกลุ่มใช้งานต่อเนื่อง 21 วันใช้งานจนจบร้อยละ 52.8 ไม่เกิดอคติและไม่ส่งผลกระทบต่อผลการศึกษา เนื่องจากเป็นไปตามธรรมชาติของการใช้งาน ซึ่งผู้ใช้งานต่อเนื่อง 21 วันมีจำนวนผู้ใช้งานครบใกล้เคียงกับการศึกษาที่ผ่านมา

อย่างไรก็ตาม การศึกษายังมีข้อด้อย เนื่องจากไม่ได้ศึกษาในรูปแบบ Randomized controlled trials (RCT) ไม่สามารถสุมกลุ่มตัวอย่างเข้าสู่การศึกษารายบุคคลได้ จำเป็นต้องสุ่มเลือก โรงเรียนแบบ Quasi-experimental design ทำให้การกระจายของทั้ง 2 กลุ่มตัวอย่างในบางตัวแปรที่ศึกษามีความแตกต่างกัน ตั้งแต่เรื่องการศึกษา ซึ่งอาจส่งผลต่อผลลัพธ์หลังการศึกษาได้ อย่างไรก็ดี ในตัวแปรที่แตกต่างกันจึงวิเคราะห์โดยเบรียบเทียบผลต่างที่เกิดขึ้นแทน ทั้งนี้อาจไม่สามารถควบคุมอคติที่เกิดจากการเรียนรู้

ที่ต่างกัน นอกจากนี้ แพลตฟอร์มที่ใช้ใน chatbot ทั้ง 2 กลุ่ม แตกต่างกัน อาจเป็นตัวแปรกวนที่ส่งผลต่อความรู้ ทัศนคติ การปฏิบัติ และความพึงพอใจได้เช่นกัน

ผลการศึกษาที่ได้อาจจะไม่สามารถขยายผลไปยังประชากรทั้งหมดได้ เนื่องจากการศึกษาครั้งนี้เลือกกลุ่มตัวอย่างผู้ป่วยของเด็กโรงเรียนเอกชนขนาดใหญ่ในเขตเมือง ซึ่งอาจมีปริบบุที่แตกต่างจากพื้นที่เขตชนบท

การศึกษาในอนาคต ควรปรับรูปแบบ chatbot เพื่อให้ใช้งานง่ายขึ้น เช่น การรับข้อมูลบิวตี้โอด้วยตรง การเพิ่มแบบทดสอบในการให้ความรู้ รวมถึงศึกษาเพิ่มเติมในเรื่องระยะเวลาที่เหมาะสมต่อการเปลี่ยนแปลงความรู้ พฤติกรรม และทัศนคติต่อการดูแลสุขภาพของปากร่วมด้วย

## บทสรุป

chatbot ที่ใช้งานระยะเวลากว่า 7 วันเปลี่ยนแปลงความรู้ พฤติกรรมการทานอาหาร และความพึงพอใจของผู้ใช้งานแตกต่างกันกับ chatbot ที่ใช้งานต่อเนื่อง 21 วันอย่างน้อยสำคัญทางสถิติ ในขณะที่การเพิ่มขึ้นของคะแนนพฤติกรรมการดูแลสุขภาพของปาก และทัศนคติของผู้ใช้งานไม่มีความแตกต่างกัน เมื่อเทียบกับกลุ่มที่ใช้งานต่อเนื่อง 21 วัน

## เอกสารอ้างอิง

- จิราพร ปีดตี, ศุรัตน์ มงคลชัยอรัญญา, นพวรรณ โพธนกุล, พงศธร จินติกานนท์, พชรวรรณ สุขุมลักษณ์. (2561). รายงานผลการสำรวจสภาวะสุขภาพของปากแห่งชาติ ครั้งที่ 8 ประเทศไทย พ.ศ. 2560 (พิมพ์ครั้งที่ 1). กรุงเทพ: บริษัท สารเจริญพาณิชย์ (กรุงเทพ) จำกัด. จาก [https://dental.anamai.moph.go.th/web-upload/migrated/files/dental2/n2423\\_3e9aed89eb9e4e3978640d0a60b-44be6\\_survey8th\\_2nd.pdf](https://dental.anamai.moph.go.th/web-upload/migrated/files/dental2/n2423_3e9aed89eb9e4e3978640d0a60b-44be6_survey8th_2nd.pdf)
- Singh B, Murphy A, Maher C, Smith AE. Time to form a habit: a systematic review and meta-analysis of health behavior habit formation and its determinants. *Healthcare (Basel)* 2024;12(23):2488.
- Pithpornchaiyakul S, Chukadee W. Evaluation of 21-day chatbot to deliver oral hygiene care for caregivers in 0-5 year-children. *J dent assoc Thai* 2023;73(3):190-198.
- Singh B, Olds T, Brinsley J, Dumuid D, Virgara R, Matricciani L, et al. Systematic review and meta-analysis of the effectiveness of chatbots on lifestyle behaviors. *NPJ Digit Med* 2023;6(1):118.
- Wongworasun S, Hunsrisakhun J, Watanapa A, Wannapahool D. Effect of oral health promoting chatbot program on knowledge in oral health care of the elderly. *Khon Kaen Dent J* 2023;26(1):33-43.
- Pithpornchaiyakul S, Naorungroj S, Pupong K, and Hunsrisakhun J. Using a chatbot as an alternative approach for in-person toothbrushing training during the COVID-19 pandemic: comparative study. *J Med Internet Res* 2022; 24(10):1-12.
- Line for Business. (2023). “LINE Official Account” จาก [https://lineforbusiness.com/th/service/line-oafeatures?utm\\_source=google&utm\\_medium=cpc&utm\\_campaign=oabroadcast&utm\\_Content=sem&gclid=Cj0KCQiAnrOtBhDIARlsAFsSe51oJ8ilOD3tMwlClOed-03Gk3UztIA9mFfXdYYXc-b\\_NK2CPeRBhFsaAj9HEALw\\_wcB#monthlyplan](https://lineforbusiness.com/th/service/line-oafeatures?utm_source=google&utm_medium=cpc&utm_campaign=oabroadcast&utm_Content=sem&gclid=Cj0KCQiAnrOtBhDIARlsAFsSe51oJ8ilOD3tMwlClOed-03Gk3UztIA9mFfXdYYXc-b_NK2CPeRBhFsaAj9HEALw_wcB#monthlyplan)
- Pupong K, Hunsrisakhun J, Pithpornchaiyakul S, Naorungroj S. Development of chatbot-based oral health care for young children and evaluation of its effectiveness, usability, and acceptability: mixed methods study. *JMIR Pediatr Parent* 2025;8:1-16.
- Hunsrisakhun J, Naorungroj S, Tangkuptanon W, Wattanasit P, Pupong K, Pithpornchaiyakul S. Impact of oral health chatbot with and without toothbrushing training on childhood caries. *Int Dent J* 2024;75(2):1348-1359.
- ฉัตรนภา จันศรี. ความรอบรู้ทางทันตสุขภาพของผู้ป่วยของที่มีผลต่อ พฤติกรรมการดูแลสุขภาพของปากเด็กก่อนวัยเรียน โดยผู้ป่วยของเด็ก อาเภอเมืองครัวร์จังหวัดครัวร์, วิทยานิพนธ์ปริญญาโท หลักสูตรสารานักสุขภาพมหาวิทยาลัยแม่ฟ้า. ปี 2565 หน้า 50
- บริญญา จิตอร่ามและกุลนาถ มากบุญ. พฤติกรรมของผู้ป่วยของในการดูแลสุขภาพของปากเด็กอายุ 3-5 ปี, วารสารทันตกรรม. 2557;25(1):26-41.
- Baskaradoss JK, AlSumait A, Behbehani E, Qudeimat MA. Association between the caregivers' oral health literacy and the oral health of children and youth with special health care needs. *PLoS one* 2022;17(1):1-16.
- Zhang J, Oh YJ, Lange P, Yu Z, Fukuoka Y. Artificial intelligence chatbot behavior change model for designing artificial intelligence chatbots to promote physical activity and a healthy diet: viewpoint. *J Med Internet Res* 2020;22(9):1-13.
- Altay S, Hacquin AS, Chevallier C, Mercier H. Information delivered by a chatbot has a positive impact on COVID-19 vaccines attitudes and intentions. *J Exp Psychol Appl* 2023;29(1):52-62.

## Original Articles

# Development of a Deep Learning Model for Diagnosing Class III Malocclusion in Pediatric Patients Using Lateral Cephalometric Radiographs

Chaypat Simsuchin<sup>1</sup> and Supattanawaree Thipcharoen<sup>2</sup>

<sup>1</sup>Department of Orthodontic and Orthopedic Craniofacial Growth Modification, Faculty of Dentistry, Nation University, Chiang Mai, Thailand

<sup>2</sup>Department of Data Science and Digital Innovation, Faculty of Innovation Technology and Creativity, The Far Eastern University, Chiang Mai, Thailand

## Abstract

This research aims to develop and evaluate deep learning models for diagnosing Class III malocclusion in pediatric patients using lateral cephalometric radiographs. The study compared an artificial neural network (ANN) model and a convolutional neural network (CNN) model with image embedding and logistic regression. Radiographs from patients aged 3-12 years (2007-2023) were analyzed. Model performance was evaluated using classification accuracy, sensitivity, precision, F1 score, and area under the ROC curve (AUC). Contrary to expectations, the ANN model outperformed the CNN model. The ANN model achieved 90.3% classification accuracy, high sensitivity and precision, an F1 score of 0.902, and an AUC of 0.948, indicating excellent discrimination ability. In contrast, the CNN model showed a lower performance with 71.6% classification accuracy, an F1 score of 0.715, and an AUC of 0.750. Despite the underperformance of the CNN model, potential improvements include data augmentation, larger diverse datasets, and exploring advanced CNN architectures. The superior performance of the ANN model suggests its potential as a reliable diagnostic tool for general dentists in early screening of Class III malocclusion. This study demonstrates the promise of deep learning in orthodontic diagnosis, particularly the effectiveness of ANN models. Further research is needed to enhance CNN performance and validate findings with larger, diverse datasets. Developing such AI-based diagnostic tools could significantly impact early detection, timely referrals, and treatment planning for Class III malocclusion in pediatric patients.

**Keywords:** Artificial Neural Networks, Class III malocclusion, Convolutional Neural Networks, Deep learning, Pediatric orthodontics

Received date: Sep 26, 2024

Revised date: Jul 30, 2025

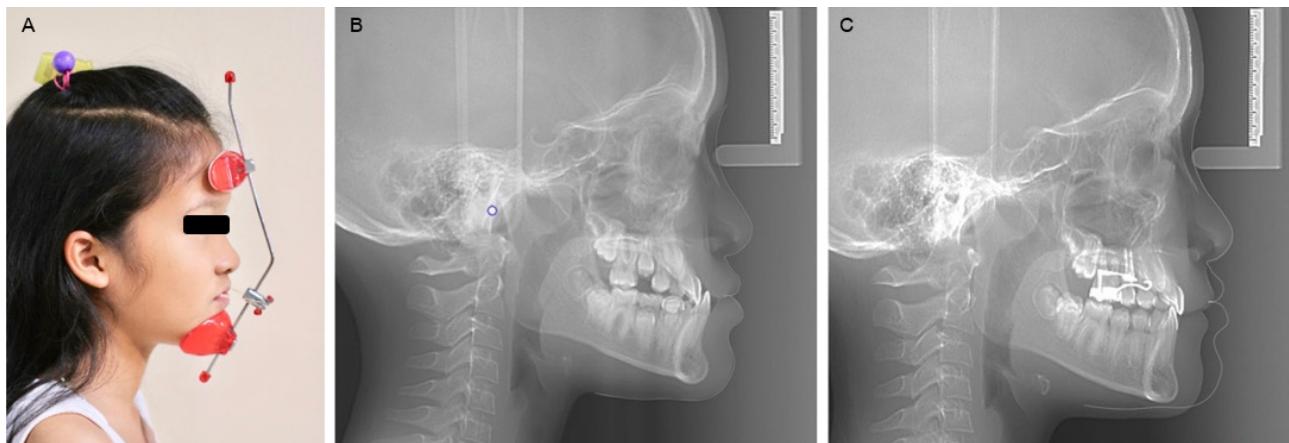
Accepted date: Aug 18, 2025

Doi: 10.14456/jdat.2026.3

### Correspondence to:

Chaypat Simsuchin, Department of Orthodontic and Orthopedic Craniofacial Growth Modification, Faculty of Dentistry, Nation University, Chiang Mai 50210, Thailand. Tel: 095-3947419 Email: chaypat\_sim@nation.ac.th

## Introduction


Class III Malocclusion is a common disorder in Asian populations, with a prevalence of up to 14%, primarily caused by maxillary deficiencies.<sup>1</sup> However,

prevalence may vary across different population groups, with rates as high as 15% or more in some Southeast Asian countries.<sup>2</sup> A study by Ellis, McNamara, and Guyer

found that 40% to 60% of patients had a correlation with small maxillary size, which is a significant factor contributing to this type of malocclusion.<sup>3</sup>

There are several approaches to treating Class III Malocclusion. In the deciduous dentition stage, early treatment using Prefabricated Functional Appliances (PFA)

can induce mandibular growth retraction, correct occlusal discrepancies, and adjust perioral muscle function.<sup>4,5</sup> For patients in the mixed dentition phase with retruded maxilla, using a face mask to stimulate midface growth with orthopedic force is an effective method.<sup>6</sup> (Fig. 1)



**Figure 1** Image A shows the use of a face mask to stimulate midface growth. Image B displays a radiograph before treatment, and Image C shows a radiograph after treatment using a face mask to stimulate midface growth.

Early diagnosis and appropriate treatment are crucial. Dentists should be able to diagnose this condition from the late deciduous dentition stage or before the end of the early mixed dentition stage, which is the most suitable time for treatment. Delayed treatment may lead to difficulties in correction and potential surgical intervention in the future.<sup>7</sup>

Currently, diagnosing Class III malocclusion in pediatric orthodontics requires analyzing lateral cephalometric radiographs, a complex and time-consuming process. Although cephalometric analysis software is available, it still heavily relies on the skills, knowledge, and experience of orthodontists. Advancements in Artificial Intelligence (AI) and Deep Learning have opened up opportunities to develop models that can predict malocclusions directly from radiographs, without the need for traditional angle and distance measurements. In such cases, using Convolutional Neural Networks (CNN) in conjunction with Image Embedding techniques and Logistic Regression algorithms can efficiently classify and predict malocclusions.

Given these advancements, this study hypothesizes that deep learning models, specifically Artificial Neural

Networks (ANNs) and Convolutional Neural Networks (CNNs), can accurately diagnose Class III malocclusion in pediatric patients using lateral cephalometric radiographs. Furthermore, these deep learning models are expected to effectively predict the necessity of using face masks to stimulate midface growth in pediatric patients with Class III malocclusion.

Artificial Intelligence is a technology that mimics human brain function, capable of analyzing data through algorithms, which are components of Machine Learning. Its capabilities are enhanced by Deep Learning through Neural Network algorithms.

Neural networks are mathematical models that simulate human learning through repetition and trial and error, similar to the brain's learning system.<sup>8</sup> They are machine learning algorithms with a basic structure consisting of an input layer, hidden layers, and an output layer. Each layer comprises processing units or neurons connected by weights. Learning in artificial neural networks occurs through the process of adjusting these weights (Fig. 2) using various learning algorithms such as Backpropagation.<sup>9</sup>

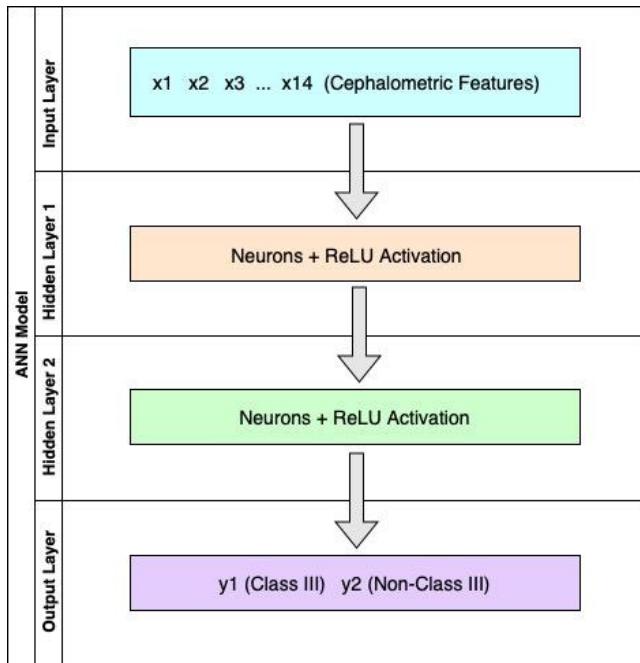



Figure 2 Structure of the Feedforward Artificial Neural Network (ANN) used in this study.

The model consists of three layers:

- Input Layer (14 nodes): Receives cephalometric features (e.g., ANB angle, Wits appraisal, Overjet, etc.).
- Hidden Layer (optimized to 16 neurons via grid search): Each neuron applies weights ( $w_i$ ), bias ( $b$ ), and activation function (ReLU:  $f(x) = \max(0, x)$ ).
- Output Layer (2 nodes): Classifies images as Class III (1) or Non-Class III (0) using a Softmax activation function.
- Bias Node (+1): Included in each layer to improve learning flexibility.
- The connections between nodes represent weight calculations and learning processes in ANN.

Deep learning based on neural network characteristics can be categorized into three primary types:

### 1. Artificial Neural Networks (ANNs)

ANNs are basic feedforward networks designed to process one-dimensional data. These networks operate in a unidirectional flow, where inputs are passed forward through weighted connections without feedback loops. The general mathematical representation of an ANN is:

$$y = f(\sum_i w_i \cdot x_i + b) \quad (1)$$

Where:

- $y$  is the output of the neuron
- $x_i$  represents the input features
- $w_i$  are the corresponding weights
- $b$  is the bias term
- $f$  is the activation function (e.g., ReLU, sigmoid)

This equation illustrates how each input is multiplied by its weight, summed with the bias, and passed through an activation function to produce the output.

### 2. Recurrent Neural Networks (RNNs)

RNNs are designed to handle sequential or time-series data.

Unlike ANNs, RNNs maintain a hidden state that captures information from previous time steps, allowing the network to model dependencies across sequences. The basic RNN equation is:

$$h_t = f(W_h \cdot h_{t-1} + W_x \cdot x_t + b) \quad (2)$$

Where:

- $h_t$ : hidden state at time  $t$
- $W_h$ : weight for hidden
- $W_x$ : weight for input  $x_t$
- $b$ : bias

This recurrent formulation enables RNNs to effectively retain and utilize prior contextual information throughout a sequence, thereby enhancing their ability to model temporal dependencies. As a result, RNNs have demonstrated strong performance in a variety of tasks that rely on sequential data processing, including language modeling, speech recognition, time-series forecasting, and other forms of sequential pattern prediction.

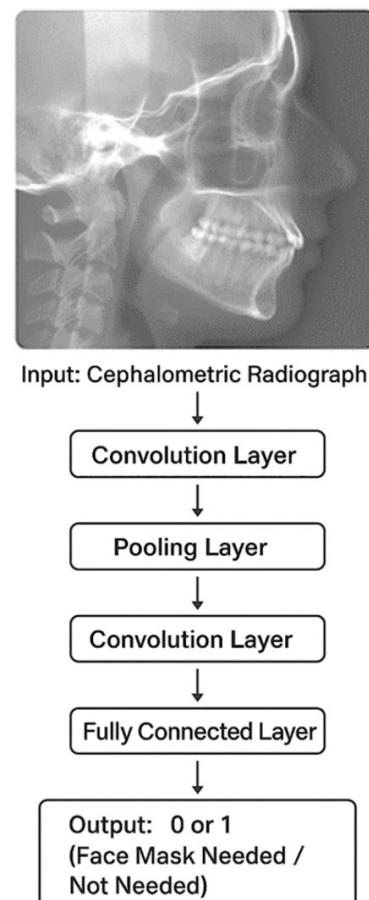
### 3. Convolutional Neural Networks (CNNs)

accept 2-dimensional image data, with networks connected

by convolutional layers, enhancing human-like vision capabilities, making them suitable for image and video processing. The convolution operation in CNNs can be represented as:

$$(f * g)(x, y) = \sum_i \sum_j f(i, j) \cdot g(x - i, y - j) \quad (3)$$

Where:


- $f(i, j)$  is the input image pixel at location  $(i, j)$
- $g$  is the kernel (filter)
- $*$  denotes the convolution operation
- $(x, y)$  is the location of the output feature map

This operation allows CNNs to learn spatially local patterns such as edges, textures, and shapes, which are essential for medical image analysis, including cephalometric radiographs.

Neural Networks, as machine learning algorithms, can be applied to deep learning, increasing the capabilities of AI technology to work more like the human brain. With this potential, neural networks have gained significant attention, with Computer Vision being used to analyze medical images.<sup>10</sup> Studies have explored the potential for analyzing dental radiographs. However, a literature review reveals that while there have been studies using machine learning techniques to analyze orthodontic radiographs, such as Taraji *et al.*'s study<sup>11</sup> of identifying important cephalometric characteristics for predicting treatment decisions in Class III malocclusion in adults, and Gabriele *et al.*'s study<sup>12</sup> of attempting to predict treatment outcomes in prepubertal Class III malocclusion patients, there is a lack of studies focusing on using deep learning techniques to diagnose and predict the need for face masks to stimulate midface growth in pediatric patients with Class III malocclusions. Moreover, no studies have compared the efficiency of artificial neural network models and convolutional neural network models in analyzing cephalometric radiographs to diagnose Class III malocclusion in pediatric patients.

This study aims to develop and compare deep learning models, specifically Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs), for diagnosing Class III malocclusion in pediatric patients from lateral cephalometric radiographs and predicting the necessity of using face masks to stimulate midface growth

(Fig. 3). The study hypothesizes that Convolutional Neural Networks (CNNs) will demonstrate superior efficiency and accuracy compared to Artificial Neural Networks (ANNs) in analyzing cephalometric radiographs for Class III malocclusion diagnosis and treatment prediction. The results of this study will help understand the advantages and limitations of each technique, leading to the development of highly efficient diagnostic tools to support the decision-making of orthodontists in diagnosis and treatment planning,<sup>13,14</sup> increase speed and accuracy in cephalometric radiograph analysis, reduce the workload of orthodontists, and minimize errors that may occur from traditional analysis.<sup>15</sup> It will also provide a pathway for developing automatic diagnostic systems for other dental abnormalities.<sup>13</sup>



**Figure 3** A schematic flowchart illustrating the Convolutional Neural Network (CNN) model for binary classification of lateral cephalometric radiographs. The input cephalometric X-ray is processed through multiple convolutional and pooling layers, followed by a fully connected layer, to predict the necessity of using face masks to stimulate midface growth. The output is binary: 1 indicates that face masks are needed, while 0 indicates that they are not required.

## Materials and Methods

This research is a comparative analytical study designed to evaluate and compare the efficiency of an Artificial Neural Network (ANN) and a Convolutional Neural Network (CNN) in classifying lateral cephalometric radiographs of pediatric patients with Class III malocclusion.

As illustrated in the workflow diagram (Fig. 4), the research process consists of three main parts: developing the ANN model from structured data, developing the CNN model from image data, and comparing their performances.

### A WORKFLOW DIAGRAM FOR AN AUTOMATED ORTHODONTIC DIAGNOSIS SYSTEM.

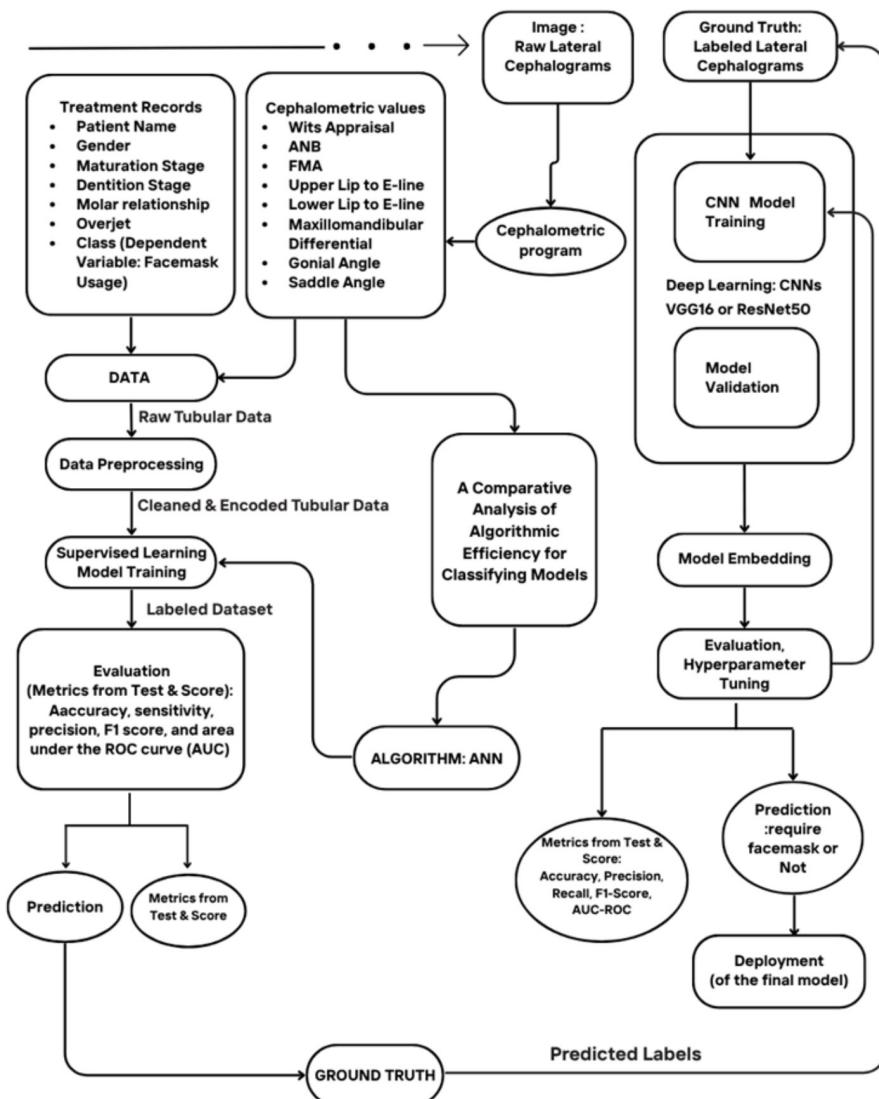



Figure 4 A workflow diagram for an automated orthodontic diagnosis system.

Figure 4 presents the diagram that outlines a workflow for developing an automated orthodontic diagnosis system. It starts with extracting cephalometric values from treatment records, which are then analyzed using cephalometric imaging and deep learning. The results are used for model embedding and evaluation, feeding into

an algorithm that performs comparative analysis to classify models. The predictions of the algorithm are assessed using additional metrics, leading to the final deployment of the system for Class III diagnosis and facemask treatment prediction.

## Part 1: Development of the Artificial Neural Network (ANN) Model

### 1.1 Data Collection and Preparation

#### 1.1.1 Population, Sample, and Inclusion Criteria

**Rationale** The study population comprised pediatric patients who received orthodontic treatment at a private dental clinic in Chiang Mai Province, Thailand, between 2007 and 2023. Inclusion criteria were patients aged 3–12 years with good quality lateral cephalometric radiographs and complete clinical diagnostic data. Exclusion criteria included patients with a history of craniofacial surgery, congenital craniofacial abnormalities, or syndromes known to affect craniofacial growth.

The lower age limit of three years was deliberately chosen based on established clinical evidence and best practices. Skeletal discrepancies associated with Class III malocclusion, particularly maxillary deficiency, can be reliably detected at this early stage, as demonstrated by foundational studies.<sup>3</sup> This age aligns with the deciduous dentition stage, which is widely recognized as the optimal period for initiating interceptive orthopedic interventions like facemask therapy.<sup>7</sup> Early diagnosis allows for treatment before the pueral growth spurt limits the efficacy of non-surgical interventions. Furthermore, the use of modern digital lateral cephalometric radiography with low-dose radiation protocols ensures that the diagnostic benefits far outweigh the minimal risks for pediatric patients, a principle supported by guidelines from the American Academy of Pediatric Dentistry and established clinical literature.<sup>21,22</sup>

This research protocol was reviewed and approved by the Institutional Review Board of Ethics Committee of Research Involving Humans, Nation University, Chiang Mai, Thailand (Approval No. NTU. EC.1-041/2024). A final sample of 195 cases was yielded, consisting of 66 boys (33.85%) and 129 girls (66.15%).

#### 1.1.2 Ground Truth Verification and Data Labeling

To establish highly accurate ground truth labels essential for supervised learning, a rigorous two-step verification protocol was implemented. First, initial cephalometric parameters (e.g., ANB angle, Wits appraisal) were automatically generated for all 195 radiographs using specialized software. Following this, two experienced

orthodontists meticulously reviewed each case. They integrated the software-generated skeletal values with a comprehensive clinical assessment of the dental relationship based on Angle's classification. Any discrepancies in classification between the two orthodontists were resolved through a consensus discussion until a definitive classification (Class III or Non-Class III) was reached. This meticulous, expert-validated process ensured the accuracy and reliability of the ground truth labels of the study, categorizing the dataset into 70 Class III malocclusion cases and 125 Non-Class III cases.

**1.1.3 Cephalometric Variable Extraction** For the ANN model, a set of 14 specific cephalometric variables was extracted from each radiograph using CephNinja® Application Software. These variables, forming the structured input for the ANN, were selected based on their established significance in standard orthodontic cephalometric analysis for evaluating skeletal relationships, facial prognathism, and growth patterns pertinent to Class III cases. The variables are detailed as follows:

**1.1.3.1 Skeletal Relationship:** SNA, SNB, and ANB Angles; Wits Appraisal; FMA and GoGn-SN Angles; Maxillary and Mandibular Lengths (Co-A, Co-Gn); Gonial Angle and Saddle Angle.

**1.1.3.2 Dental Relationship:** U1-SN and L1-NB Angles.

**1.1.3.3 Soft Tissue Profile:** Upper and Lower Lip to E-line.

### 1.2 AI Model Development Platform and Frameworks

The deep learning models in this study were developed and evaluated within a unified, high-level environment to ensure consistency and reproducibility. The primary platform used was Orange Data Mining Tools (version 3.39.0), an open-source visual programming software for machine learning and data analysis. While the modeling process was conducted visually, Orange utilizes industry-standard open-source libraries for its underlying computations. This allows for the power of complex frameworks to be leveraged through an intuitive and verifiable workflow:

**1.2.1 ANN Implementation:** The feedforward Artificial Neural Network (ANN) was constructed using the

"Neural Network" widget within Orange. This component functions as an interface to the Scikit-learn library, primarily utilizing its MLPClassifier implementation for network training and optimization.

**1.2.2 CNN Implementation:** The Convolutional Neural Network (CNN) was developed using the "Image Analytics" add-on in Orange. This module integrates with the TensorFlow/Keras framework, enabling the use of pre-trained architectures like ResNet50 for transfer learning and end-to-end image classification tasks directly within the visual workflow.

By using this integrated platform, we were able to rapidly prototype and compare both structured data models (ANN) and image-based models (CNN) while maintaining a high degree of methodological transparency.

### 1.3 ANN Model Development and Training

The structured dataset containing the 14 cephalometric variables was prepared for model training using the Orange Data Mining tool. A key step in data preparation involved normalizing all numerical data to a uniform [0, 1] range to enhance model performance and stability. The total dataset (N=195) was then divided into a training set (70%) and a testing set (30%) using stratified random sampling. This stratification was based on the primary outcome of the clinical need for facemask treatment to ensure that both categories were proportionally represented in the training and testing phases, thereby preventing biased training and ensuring a robust evaluation.

The ANN model was constructed as a feedforward network using the "Neural Network" widget in Orange. The architecture consisted of a 14-node input layer, a single hidden layer with the Rectified Linear Unit (ReLU) activation function, and a two-node output layer using a Softmax function for binary classification. The number of nodes in the hidden layer was optimized via a grid search technique. The model was trained using the Adam optimizer (learning rate = 0.001), categorical cross-entropy as the loss function, and L2 regularization ( $\lambda = 0.01$ ) to prevent overfitting. A 10-fold cross-validation strategy was employed over 1000 epochs with a batch size of 32 for a robust and generalizable performance evaluation.

## Part 2: Development of the Convolutional Neural Network (CNN) Model

### 2.1 Input Data and Pre-processing

The CNN model was developed for end-to-end classification directly from the lateral cephalometric radiographic images, aiming to predict the necessity of facemask therapy from raw pixel data without prior extraction of numerical cephalometric values. The input for this model consisted of the same set of 195 radiographs used in Part 1.

The image pre-processing pipeline involved several crucial steps. All radiographs were first resized to a standard 224x224 pixels to ensure uniform input size for the network. Subsequently, pixel values were normalized to a [0, 1] range. Acknowledging the limited size of medical imaging datasets and its potential impact on CNN performance, data augmentation techniques were applied. This is a critical step to artificially increase the size and diversity of the dataset, allowing the CNN to learn more robust and generalizable features. The augmentation included Rotation ( $\pm 20^\circ$ ), Horizontal Flipping, Shearing ( $\pm 15\%$ ), and Zooming (0.8-1.2x). These techniques have been demonstrated in the literature to significantly improve CNN performance in cephalometric classification tasks.<sup>7</sup>

### 2.2 CNN Model Architecture and Training

A transfer learning approach was employed, utilizing a ResNet50 architecture pre-trained on the ImageNet dataset. This method is highly recommended for medical imaging tasks with limited data, as it leverages features learned from a massive dataset.<sup>5</sup> The model was fine-tuned for this specific task by replacing the final fully connected layers with a Logistic Regression classifier and implementing Global Average Pooling to reduce the risk of overfitting. The dataset was divided into an 80% training set and a 20% test set. The model was trained using the Adam optimizer with a fine-tuning learning rate of 0.0001 for 50 epochs, utilizing a 20% validation split and early stopping criteria to select the best-performing model iteration and prevent overfitting.

## Part 3: Comparative Performance Evaluation

### 3.1 Evaluation Strategy

The performance of both the ANN and CNN models was comprehensively and separately evaluated to facilitate a direct and fair comparison of their efficiency. The evaluation was based on a standard suite of machine learning metrics, which were calculated from the predictions made by each model on their respective unseen test sets. These metrics were chosen to provide a multidimensional assessment of the diagnostic capability of each model:

**3.1.1 Classification Accuracy (CA):** Measures the overall proportion of correct predictions. ( $CA = (TP + TN) / (TP + TN + FP + FN)$ )

**3.1.2 Recall (Sensitivity):** Assesses the ability of the model to correctly identify all actual positive cases, crucial for minimizing missed diagnoses. ( $Recall = TP / (TP + FN)$ )

**3.1.3 Precision:** Evaluates the proportion of positive predictions that were actually correct, important for reducing false alarms. ( $Precision = TP / (TP + FP)$ )

**3.1.4 F1-score:** The harmonic mean of Precision and Recall, providing a single, balanced measure of the performance of the model. ( $F1 = 2 \times (Precision \times Recall) / (Precision + Recall)$ )

**3.1.5 Area Under the ROC Curve (AUC):** Quantifies the ability to distinguish between classes across all thresholds.

This rigorous evaluation strategy ensures a robust comparison, the results of which are presented in the following section to determine the most suitable model for implementation.

## Results

The research results analyze and compare the efficiency of deep learning models between Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs) using Image Embedding and Logistic Regression in classifying cephalometric radiographs of pediatric patients with Class III malocclusion as follows:

### 1. Efficiency of the Artificial Neural Network model

The Artificial Neural Network model demonstrates high efficiency, achieving a classification accuracy of up to 90.3%. It exhibits strong performance in terms of both sensitivity and precision, which are crucial metrics for evaluating classification models. Additionally, the model boasts a high F1-score, indicating a well-balanced performance between precision and sensitivity. This combination of high accuracy, sensitivity, precision, and F1-score suggest that the Artificial Neural Network model is highly effective and reliable for its intended classification tasks.

### 2. Efficiency of the Convolutional Neural Network model

The Convolutional Neural Network model, which utilizes Image Embedding and Logistic Regression with Stratified Cross-validation using 20 folds, demonstrates notable efficiency. The Logistic Regression component of this model achieves an Area Under the ROC Curve (AUC) of 0.750, indicating good discriminative ability. The model also exhibits a Classification Accuracy of 0.716, suggesting that it correctly classifies over 71% of the instances. Furthermore, it attains an F1-score of 0.715, which represents a balanced harmony between precision and recall. These metrics collectively indicate that the model performs well in its classification task, showing a good balance between identifying positive cases and avoiding false positives.

### 3. Efficiency Comparison

The comparison reveals that the Artificial Neural Network (ANN) model significantly outperforms the Convolutional Neural Network (CNN) model using Image Embedding and Logistic Regression across all metrics. The ANN model achieves a notably higher Classification Accuracy of 90.3% compared to the CNN model of 71.6%. The performance improvement is substantial, ranging from 19% to 24% across all metrics. The most striking difference is observed in the Area Under the ROC Curve, where the ANN model shows a 24.13% improvement. The consistent superiority of the ANN model across all metrics underscores its significantly better performance, indicating that it is the more efficient and effective choice for the given task. Table 1

Table 1 Comparison of performance parameters between Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs)

| Performance parameters         | ANNs  | CNNs  |
|--------------------------------|-------|-------|
| Classification Accuracy (CA)   | 0.903 | 0.716 |
| Recall (Sensitivity)           | 0.903 | 0.716 |
| Precision                      | 0.903 | 0.714 |
| F1-score                       | 0.902 | 0.715 |
| Area Under the ROC Curve (AUC) | 0.948 | 0.750 |

#### 4. Additional Observations

Additional observations reveal that the CNN model using Image Embedding and Logistic Regression may have room for improvement, such as adjusting hyperparameters or using more complex architectures. Other factors should also be considered, including processing speed and ability to work with different data sizes. Concluding the study, the Artificial Neural Network model demonstrates superior performance in classifying cephalometric radiographs of pediatric patients with Class III malocclusion. However, further studies should be conducted to improve the efficiency of the Convolutional Neural Network model using Image Embedding and Logistic Regression, and statistical tests should be performed to confirm the significance of the results.

### Discussion

While this study revealed that the Artificial Neural Network (ANN) model demonstrated superior performance with an accuracy of 90.3% compared to the Convolutional Neural Network (CNN) model's accuracy of 71.6%, the findings from the ANN model hold significant and immediate clinical applicability. The primary aim of this study was to predict the necessity of using face masks to stimulate midface growth in pediatric Class III malocclusion patients, and the ANN model has proven effective in this regard.

#### Clinical Implications and Facemask Treatment Prediction

The high accuracy of the ANN model (90.3%) in classifying Class III malocclusion and identifying cases that require facemask therapy positions it as a valuable tool for orthodontic practice. The integration of such a model into clinical workflows offers several direct benefits.

- **Identifying Patients at Risk:** The ANN model analyzes crucial cephalometric variables to help clinicians predict which pediatric patients exhibit skeletal

characteristics indicative of Class III malocclusion that would benefit significantly from early facemask therapy. This predictive capability allows for proactive identification rather than reactive diagnosis.

- **Reducing Treatment Delays:** Early intervention is paramount for successful Class III correction, especially when skeletal growth modification is targeted. By integrating the ANN model into clinical workflows, clinicians can identify optimal treatment windows for initiating facemask therapy. This early identification is critical for improving prognosis and can significantly reduce the risk of more complex, late-stage interventions or the eventual necessity for orthognathic surgery in adulthood. This aligns with findings by Pattanaik & Mishra<sup>6</sup> who emphasized the effectiveness of early intervention. Khan & Karra<sup>7</sup> also discussed the benefits of early treatment in Class III malocclusion, reinforcing the importance of timely intervention facilitated by predictive models.

- **Supporting Personalized Treatment Approaches:** Based on the comprehensive analysis of cephalometric parameters and the predictions of the model, orthodontists can leverage this information to customize highly individualized treatment plans for their patients. This data-driven approach enhances the precision of diagnosis and treatment strategy, moving towards more personalized orthodontics (Taraji *et al.*,<sup>11</sup>).

This expanded discussion, supported by relevant literature, clearly articulates the direct relevance and practical application of the ANN model in facilitating timely and effective facemask interventions for Class III patients. The ability of the ANN to provide accurate and consistent predictions can aid both general dentists in referral decisions and orthodontists in treatment planning.

### Why did ANN outperform CNN in this study?

In this experiment, the ANN model achieved higher classification accuracy (90.3%) compared to the CNN model (71.6%), as well as superior performance across other evaluation metrics. Several key factors contributed to this outcome.

#### Limited dataset size and CNN's data dependency

A primary factor contributing to the performance discrepancy is the limited size of the dataset in the context of the data-intensive nature of a CNN. Deep CNN architectures are designed to learn robust feature representations by extracting complex spatial patterns from images, a process that requires a large and diverse dataset to be effective. This study, however, utilized a dataset of 195 cephalometric radiographs, which is insufficient to fully leverage the capabilities of a CNN, as these models often need thousands of labeled images to achieve strong generalization. This limitation is less impactful for ANN models, which can be trained effectively on smaller, structured tabular datasets. The strength of ANN lies in its ability to learn directly from numerical feature representations in this case, the 14 well-defined cephalometric measurements rather than from raw pixel data. This distinction is supported by existing literature; for instance, Gabriele *et al.* (2003) noted that CNNs require significantly more training data than traditional machine learning models for cephalometric classification. Similarly, a recent study by Zhang *et al.* (2024) found that while CNN performance tends to deteriorate on small medical imaging datasets, ANN models maintain their stability when trained on structured numerical inputs.

### Feature Representation and the Role of Data Augmentation

Another critical distinction contributing to the performance disparity lies in the method of feature representation each model employs. The ANN model operates on structured numerical inputs—the 14 pre-defined cephalometric measurements. This approach makes it inherently less dependent on large datasets because the features provided are already high-level, curated, and known to be diagnostically relevant. In essence, the complex task of feature extraction was performed by human experts,

allowing the ANN to focus solely on learning the patterns between these potent predictors.

In contrast, CNNs process raw pixel-based inputs, requiring the model to autonomously learn and extract a hierarchy of spatial features, from simple edges to complex anatomical shapes. This end-to-end feature extraction is a significant challenge for a CNN when working with a small dataset, as it may fail to learn robust and generalizable features. Consequently, this ANN model benefited directly from the expert-curated cephalometric features, leading to its superior accuracy. This finding aligns with existing literature, where studies by Schwendicke *et al.* (2020) emphasized that traditional ANNs remain highly effective for structured dental data,<sup>10</sup> and Aksoy *et al.* (2022) demonstrated that CNNs tend to underperform compared to ANNs when trained on limited orthodontic radiograph datasets.<sup>19</sup>

To overcome these challenges for CNNs, a viable and highly recommended solution is the application of data augmentation. By artificially increasing the size and diversity of the training set, data augmentation can help the CNN learn more robust feature representations, thereby enhancing its predictive performance even with an initially small dataset. For cephalometric radiographs, recommended techniques include Rotation ( $\pm 20^\circ$ ) to account for positional variations, Horizontal Flipping to increase data diversity, Shearing ( $\pm 15\%$ ) to simulate distorted projections, and Zooming (0.8-1.2x) to improve recognition of anatomical structures at different scales. The effectiveness of these methods is well-supported; for instance, Sabri *et al.* (2023) demonstrated a 12% improvement in CNN accuracy in dental image tasks, while Zhang *et al.* (2024) reported a 15% increase in performance after applying similar techniques on small medical imaging datasets.<sup>17</sup> This underscores the critical role of data augmentation in future efforts to successfully implement CNNs in this domain.

### AI Models vs. Traditional Human Diagnosis

The traditional diagnosis of Class III malocclusion relies on the expertise of orthodontists in analyzing lateral cephalometric radiographs, a process that can be both time-consuming and subjective. In contrast, artificial intelligence (AI) models offer a promising alternative

by providing automated, consistent, and objective assessments. A detailed comparison reveals the distinct advantages and limitations of each approach.

In terms of diagnostic accuracy, the ANN model developed in this study demonstrated a high performance of 90.3%, placing it on par with the typical accuracy range of experienced orthodontists, which is estimated to be between 85-95% depending on their experience.<sup>11</sup> This stands in contrast to the CNN model, which achieved a lower accuracy of 71.6%. A key advantage of the ANN is its high consistency, as it operates based on a standardized algorithm, thereby eliminating the inter-examiner variability commonly observed among human clinicians.<sup>13</sup> While AI models provide objective, data-driven results, the consistency of CNNs can be moderate and data-dependent, whereas human interpretation inherently varies between practitioners.

The most significant divergence is seen in efficiency and processing time. The ANN model can analyze an image in seconds, a stark contrast to the five to ten minutes required for a manual assessment by an orthodontist. This rapid processing capability presents a substantial opportunity to enhance clinical workflow efficiency, particularly in high-volume settings.<sup>10</sup> Furthermore, both the ANN and CNN models eliminate the element of subjectivity, which is a well-documented challenge in traditional cephalometric analysis.

However, human expertise remains indispensable, especially when considering the learning curve and the ability to manage complex cases. While a pre-trained ANN requires minimal setup and the CNN requires fine-tuning, an orthodontist needs years of clinical training and experience. This extensive training is crucial for detecting and managing borderline cases, where nuanced clinical judgment is paramount. The ANN model exhibits a strong ability for pattern recognition from structured data, but an experienced orthodontist excels by integrating a holistic view that includes patient history, growth prediction, and other contextual factors not available in a single radiograph a level of comprehensive decision-making that AI models currently cannot replicate.<sup>11</sup> Therefore, while AI, particularly the ANN model, shows great potential as a powerful diagnostic support tool, the irreplaceable

clinical judgment of orthodontists remains central to patient care.

### Improving Deep Learning Approaches and Future Research Directions

Despite the promising results of the ANN model, there is significant potential for further improving deep learning approaches, particularly concerning the CNN model, for diagnosing Class III malocclusion in pediatric patients. To enhance the performance of the CNN model, future research should focus on data augmentation techniques. As demonstrated by Zhang *et al.*<sup>17</sup> and Sabri *et al.*<sup>18</sup>, implementing data augmentation methods such as rotation, flipping, zooming, shearing, and brightness adjustment can diversify the training dataset and address class imbalance issues. Zhang *et al.*<sup>17</sup> reported that data augmentation techniques improved the accuracy of their model by 15%, while Sabri *et al.*<sup>18</sup> found a 12% increase in model sensitivity using similar methods. It is proposed to utilize platforms like Google Colab, which offers free access to GPUs and cloud processing capabilities, to implement various augmentation techniques. These could include image rotation ( $\pm 20^\circ$ ), horizontal flipping, zooming (0.8-1.2), shearing and translation ( $\pm 0.2$ ), and brightness and contrast adjustments (0.8-1.2). These techniques will not only increase data diversity but also mitigate the problem of imbalanced learning.

Moreover, the compilation of a larger and more diverse set of cephalometric radiographs, encompassing patients of various ages, genders, and ethnicities, as seen in studies by Aksoy *et al.*<sup>19</sup> and Kaya *et al.*<sup>20</sup> would be crucial. Aksoy *et al.*<sup>19</sup> demonstrated that increasing dataset diversity led to a 10% improvement in diagnostic accuracy across different patient demographics. Similarly, Kaya *et al.*<sup>20</sup> reported enhanced model generalizability when trained on a multi-center dataset. This step, combined with the exploration of more complex CNN architectures and transfer learning from pre-trained models, has the potential to significantly improve the accuracy and reliability of the CNN model. By addressing these aspects in future studies, the aim is to develop a more robust and clinically applicable AI system for orthodontic diagnosis. Such a system could potentially outperform the current ANN model and ultimately

improve early detection and treatment planning for Class III malocclusion in pediatric patients.

### Impact of Gender on Class III Malocclusion

While this study primarily focused on model performance, the influence of gender is a relevant factor in Class III malocclusion. Previous studies, such as Guyer *et al.* (1986)<sup>3</sup>, have indicated a higher prevalence of Class III malocclusion in males, potentially due to more pronounced mandibular growth patterns. Although gender was included as a variable, further statistical analysis, such as a Chi-square test, could be performed in future work to investigate its significance as a predictor in our dataset. This would provide deeper, evidence-based insights into gender-related differences for diagnosis and treatment planning.

### Future research should also consider the following areas

- **Feature extraction optimization** Investigating advanced feature extraction techniques specific to cephalometric landmarks could enhance the model's ability to identify key diagnostic indicators (Polizzi & Leonardi<sup>15</sup>).
- **Multi-modal approach** Integrating other types of diagnostic data, such as intraoral scans or facial photographs, alongside cephalometric radiographs could provide a more comprehensive diagnostic tool.
- **Longitudinal studies** Conducting studies that track patients over time could help in understanding the predictive capabilities of the model for malocclusion progression and treatment outcomes.
- **Explainable AI (XAI)** Developing methods to interpret the decision-making process of the model could increase trust and adoption among clinicians, as well as provide insights into previously unrecognized diagnostic patterns (Schwendicke *et al.*,<sup>10,14</sup>).
- **Clinical validation** Extensive clinical trials comparing the performance of the AI model against experienced orthodontists across various clinical settings would be crucial for validating its real-world applicability, particularly focusing on the accuracy and efficiency of facemask therapy prediction (Gabriele *et al.*,<sup>12</sup>).
- **Ethical Considerations and Implementation Challenges** Address potential barriers to widespread clinical adoption, including regulatory approval, data privacy concerns, integration into existing clinical software,

and the need for comprehensive training for dental professionals.

### • Proposed Statistical Comparison for Future Work:

Although comprehensive comparative data with manual diagnoses from orthodontist was not available for this study, future research should include a statistical evaluation of AI model performance. If such data becomes available, a presentation is suggested.

**1. Sensitivity & Specificity Analysis** How well does the ANN model detect true positive and true negative cases compared to human diagnosis?

**2. Inter-examiner Agreement (Cohen's Kappa)** Does the ANN model provide more consistent results than human raters?

**3. Time Efficiency Comparison** Measuring AI processing time vs. the average assessment time of an orthodontist.

In conclusion, while the current ANN model shows promising results, particularly in its capacity to predict the necessity of facemask treatment for Class III malocclusion, there is substantial room for improvement in deep learning approaches. By addressing the limitations of the CNN model and exploring advanced techniques, we can work towards developing a more accurate, reliable, and clinically valuable diagnostic tool. This improved AI system has the potential to significantly enhance early detection and treatment planning for Class III malocclusion in pediatric patients, ultimately leading to better orthodontic outcomes.

## Conclusion

This research demonstrates the superior performance of the Artificial Neural Network (ANN) model compared to the Convolutional Neural Network (CNN) model using Image Embedding and Logistic Regression in analyzing and classifying cephalometric radiographs of pediatric patients with Class III malocclusion. The ANN model showed outstanding results with an accuracy of 90.3%, meaning it could correctly classify images more than nine out of ten times. Moreover, it exhibited high sensitivity and precision, indicating a strong ability to identify true positive cases accurately and reduce misdiagnoses in terms of both false positives and false negatives. The high F1-score

further confirms the balance between the sensitivity and the precision of the model. In contrast, the CNN model using Image Embedding and Logistic Regression showed inferior results. With an AUC of 0.750, which is considered good but not excellent, the model achieved a classification accuracy of 71.6% and an F1-score of 0.715. While these results are acceptable, they are significantly behind the performance of the ANN model. This comparison is crucial in the field of orthodontics, as accurate diagnosis of Class III malocclusion is essential for treatment planning and follow-up. The use of the ANN model could potentially increase diagnostic accuracy, reduce treatment errors, and lead to the development of highly efficient clinical decision support systems in the future.

## References

1. Kanas RJ, Carapezza L, Kanas SJ. Treatment classification of Class III malocclusion. *J Clin Pediatr Dent* 2008;33(2):175–85.
2. Alhammadi MS, Halboub E, Fayed MS, Labib A, El-Saaidi C. Global distribution of malocclusion traits: A systematic review. *Dental Press J Orthod* 2018;23(6):40.e1-40.e10.
3. Guyer EC, Ellis EE 3rd, McNamara JA Jr, Behrents RG. Components of Class III malocclusion in juveniles and adolescents. *Angle Orthod* 1986;56(1):7–30.
4. Simsueh C, Chen Y, Huang S, Mallineni SK, Zhao Z, Hagg U, et al. Unilateral Scissor Bite Managed with Prefabricated Functional Appliances in Primary Dentition—A New Interceptive Orthodontic Protocol. *Children (Basel)* 2021;8(11):957.
5. Simsueh C, Chen Y, Mallineni SK. Clinical effectiveness of vestibular shields in orthodontic treatment: a scoping review. *Children (Basel)* 2023;10(1):16.
6. Pattanaik S, Mishra S. Treatment of Class III with facemask therapy. *Case Rep Dent* 2016;2016:6390637.
7. Khan MB, Karra A. Early treatment of class III malocclusion: a boon or a burden?. *Int J Clin Pediatr Dent* 2014;7(2):130–6.
8. Beniwal S, Arora J. Classification and feature selection techniques in data mining. *Int J Eng Res Technol* 2012;1(6):1–6.
9. Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. *Nature* 1986;323(6088):533–6.
10. Schwendicke F, Samek W, Krois J. Artificial intelligence in dentistry: chances and challenges. *J Dent Res* 2020;99(7):769–74.
11. Taraji S, Choi DS, Petrov Y, Putra AE, Li G, Kuang Y, et al. Novel machine learning algorithms for prediction of treatment decisions in adult patients with class III malocclusion. *J Oral Maxillofac Surg* 2023;81(11):1391–402.
12. Gabriele S, Christopher JL, Angelika SE. Children with class III malocclusion: Development of multivariate statistical models to predict future need for orthognathic surgery. *Angle Orthod* 2003;73(2):136–45.
13. Moon JH, Hwang HW, Lee SJ. Evaluation of an automated superimposition method for computer-aided cephalometrics. *Angle Orthod* 2020;90(3):390–6.
14. Schwendicke F, Singh T, Lee JH, Gaudin R, Chaurasia A, Wiegand T, et al. Artificial intelligence in dental research: Checklist for authors, reviewers, readers. *J Dent* 2021;107:103610.
15. Polizzi A, Leonardi R. Automatic cephalometric landmark identification with artificial intelligence: An umbrella review of systematic reviews. *J Dent* 2024;149:105056.
16. Ratra R, Gulia P. Experimental evaluation of open source data mining tools (WEKA and Orange). *Int J Eng Trends Technol* 2020;68(8):30–5.
17. Zhang H, Liu C, Yang P, Yang S, Yu Q, Liu R. The concept of AI-assisted self-monitoring for skeletal malocclusion. *Health Informatics J* 2024;30(3):14604582241274511.
18. Fatin A, Natasya MS, Azliza MA, Aida NAA, Mohd AM, Afifah AS, et al. Classification of malocclusion using convolutional neural network and knowledge-based systems. In: 2023 International Conference on Recent Advances in Electrical and Electronics Engineering (ICRAIEE); 2023 Nov 22-23; Putrajaya, Malaysia. IEEE; 2023. p. 1–6.
19. Aksoy S, Kılıç B, Suzek TO. Comparative analysis of deep learning and machine learning models for early prediction of skeleton class III malocclusion from profile photos. medRxiv [Preprint]. 2022 Jul 27 [cited 2024 Jul 6]. Available from: <https://www.medrxiv.org/content/10.1101/2022.07.26.22277593v1>.
20. Kaya E, Güneç HG, Ürkmez ES, Aydin KC, Ates HF. Deep learning for diagnostic charting on pediatric panoramic radiographs. *Int J Comput Dent* 2023;26(2):107–13.
21. Proffit WR, Fields HW, Sarver DM. Contemporary Orthodontics. 6th ed. St. Louis, MO: Elsevier; 2019.
22. American Academy of Pediatric Dentistry. Guideline on oral radiography in children. In: The Reference Manual of Pediatric Dentistry. Chicago, IL: American Academy of Pediatric Dentistry; 2023. p. 306–12. Available from: <https://www.aapd.org/research/oral-health-policies--recommendations/oral-health-guidelines/radiographs>.

## Original Articles

# Association between a Quantity of *Bifidobacterium longum* and *Fusobacterium nucleatum*, Clinical Symptoms, and Radiographic Findings in Infected Root canal of Primary Molars

Mirunti Chanovit<sup>1</sup> and Kemthong Mitrakul<sup>1</sup>

<sup>1</sup>Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, Bangkok, Thailand

## Abstract

To quantify *Bifidobacterium longum* and *Fusobacterium nucleatum* levels in the infected root canals of primary teeth and to analyse the association between these bacteria, clinical signs and symptoms, and radiographic findings. One hundred and twenty Thai children, aged 2 to 8 years old, were recruited from the Pediatric Dental Clinic, Maha Chakri Sirindhorn Dental Hospital, Mahidol University, Nakhon Pathom, Thailand. The treatment received was either pulpectomy or pulpotomy based on the diagnosis of the American Academy of Pediatric Dentistry (AAPD) guidelines. Clinical signs and symptoms and periapical radiographs of the infected primary teeth were recorded. A total of 120 samples were collected from primary molar teeth using aseptic techniques. DNA was extracted from samples and quantitative real-time PCR was performed using fluorescent dye (SYBR green). Participants included 62 boys (52%) and 58 girls (48%). Mean age±standard deviation was 5.62±1.22 years old. Eighty-three participants (69%) and 115 participants (96%) had clinical signs and symptoms and showed radiographic pathology of an infected root canal, respectively. There was a 100% (120/120) detection rate using the 16srRNA universal primers. *B. longum* and *F. nucleatum* were detected at 56% (67/120) and 57% (68/120), respectively. Range of total bacteria, *B. longum* and *F. nucleatum* detection were  $1.63 \times 10^2$ - $1.64 \times 10^7$ ,  $0.117 \times 10^6$  and  $0.202 \times 10^6$  cells/ml, respectively. Range of the ratio of *B. longum*/total bacteria and *F. nucleatum*/total bacteria were  $0.3.13 \times 10^{-1}$  and  $0.7.13 \times 10^{-1}$ , respectively. The ratio of *B. longum*/total bacteria correlated with clinical signs and symptoms in only the sensitivity to percussion ( $p=0.043$ ) while the ratio of *F. nucleatum*/total bacteria were correlated with three clinical signs and symptoms which are sensitivity to percussion ( $p=0.027$ ), sensitivity to palpation ( $p=0.001$ ), and the presence of gingival abscess ( $p=0.001$ ). The ratio of *B. longum*/total bacteria were not correlated with any of radiographic findings while the ratio of *F. nucleatum*/total bacteria were associated with the widening periodontal ligament (PDL) space ( $p=0.004$ ), periapical lesion ( $p=0.028$ ), furcation involvement ( $p=0.002$ ), and root resorption ( $p=0.027$ ). In conclusion, *B. longum* and *F. nucleatum* were detected higher than 50% in the infected root canal of primary teeth. *F. nucleatum* levels showed positive correlation with many clinical symptoms and radiograph pathology, while *B. longum* levels showed positive correlation with sensitivity to percussion.

**Keywords:** *Bifidobacterium longum*, Early childhood caries, *Fusobacterium nucleatum*, Primary teeth, Real-time PCR, Root canal infection

**Received date:** Jun 20, 2025

**Revised date:** Sep 2, 2025

**Accepted date:** Sep 21, 2025

**Doi:** 10.14456/jdat.2026.4

**Correspondence to:**

Kemthong Mitrakul, Department of Pediatric Dentistry, Faculty of Dentistry, Mahidol University, 6 Yothee Road, Ratchathewi District, Bangkok 10400, Thailand. Tel: 02-2007821-2, Fax: 02-2007820 Email: mkemthong@yahoo.com

## Introduction

Dental caries is one of the most prevalent chronic diseases in the world. More than 530 million children worldwide have dental caries in primary dentition which impacts their quality of life.<sup>1</sup> In Thailand, dental caries prevalence in three and five year olds were 47% and 72%, respectively.<sup>2</sup> Without proper treatment in time, bacteria will eventually invade into the dental pulp and root canal therapy is then needed to remove the infected pulp tissue.<sup>3</sup> The need for root canal treatment in three and five year-old Thai children were 10% and 19%, respectively.<sup>4</sup>

Dental biofilm on the occlusal surfaces of primary teeth is associated with active carious lesions.<sup>5</sup> Once the caries progresses deeper, bacteria which are located at the advanced frontline of the biofilms are directly involved in inducing damage and consequential inflammation of dental pulp tissue. Eventually, the microorganisms that initially occupy the pulp chamber and root canal lumen invade the entire root canal system. Root canal infection is a common consequence of dental caries. Much effort has been made to study and analyse the bacterial composition in caries lesions biofilm, especially in relation to advanced caries. Previous studies of the microbiology of advanced caries used a classical cultivation of the bacteria and mainly focused on mature plaque ecology.<sup>5</sup> Those studies have contributed to important information about the predominant composition of the biofilm in advanced carious surfaces, but do not include yet uncultured organisms.<sup>6-8</sup> Moreover, site-specific sampling of advanced caries lesions has already been performed and investigated by up-to-date molecular techniques, but the studies have been limited to only advanced stages of caries lesions involving the dentin.<sup>9,10</sup> There is still a significant knowledge gap in bacterial composition within the root canals especially in primary teeth representing the complex ecology of root canal biofilm.

Previous studies have identified bacteria isolated from carious lesions and vital carious exposure of pulp tissue from primary teeth, results showed that the microbiota of the carious exposed pulp was similar to those of carious lesions.<sup>11-16</sup> The dominant bacteria detected in pulpitis were *S. mutans* and *Bifidobacterium*.<sup>12</sup> Another study

found that the most frequently detected bacteria in deep dental caries and irreversible pulpitis were *S. mutans*, *Fusobacterium nucleatum*, *Veillonella*, *Lactobacillus* and *Enterococcus faecalis*.<sup>17,18</sup>

*Bifidobacterium longum* is a gram-positive, rod-shaped, non-filamentous, non-motile, non-spore forming, anaerobic bacteria.<sup>19</sup> It is frequently detected in the human oral cavity, although it may also be isolated from the human gastrointestinal tract or infections. Many *Bifidobacterium*, especially *B. longum*, have been isolated from root carious lesions and from occlusal carious lesions in children and adults.<sup>9</sup> Moreover, it is one of the bacteria that has the highest mean proportions in exposed vital primary pulp due to dental caries.<sup>20</sup> It is acidogenic and acid resistant, with the ability to survive prolonged exposure to low pH. In addition, it is able to proliferate in an acidic environment because of self-protection mechanisms in the absence of an energy source. This ability of *B. longum* in an acidic environment may account for the ability to proliferate caries lesions in the presence of *Streptococci* and *Lactobacilli*.<sup>19</sup> Recent studies have demonstrated an association between *Bifidobacterium* and early childhood caries (ECC).<sup>21-23</sup> A previous study in Thai children also reported that *Bifidobacterium* levels were significantly higher in the supra gingival plaque of ECC children when compared with caries-free children.<sup>21</sup> Also, our previous study showed that *Bifidobacterium* was detected significantly higher in the pulp necrosis group when compared with the irreversible pulpitis group.<sup>23</sup>

*Fusobacterium nucleatum* is gram-negative, rod-shaped, non-spore-forming, non-motile, obligate anaerobic bacteria that colonise in the oral cavity.<sup>24</sup> It has been isolated from primary endodontic infections in adults.<sup>25</sup> *F. nucleatum* is the most prevalent species found in root canal infections.<sup>26-28</sup> This microorganism has been found between 18%- 25% of the pulp infections in primary teeth.<sup>29,30</sup> Previous studies reported that *F. nucleatum* is associated with the clinical condition and reflects the persistent instance of endodontic infection in primary teeth.<sup>27,30</sup> *Fusobacterium* species are predominant in teeth with apical abscesses and are also related to the degree of patient pain.<sup>25</sup> Even though many studies have investigated the great diversity of bacteria

involved in endodontic infections in primary teeth,<sup>31-33</sup> there are few studies among Thai children.<sup>17,23</sup> Our previous study found that *F. nucleatum* was significantly higher in the pulp necrosis group when compared with the irreversible pulpitis group. In addition, it was correlated with clinical swelling at the gingiva area.<sup>23</sup>

Quantitative real-time PCR shows a highly sensitive and specific assay for the identification and quantification of oral pathogens by using specific primers.<sup>34</sup> The purpose of this study is to quantify *B. longum* and *F. nucleatum* levels in the infected root canals of primary teeth and to analyse the association between these bacteria, clinical signs and symptoms, and radiographic pathology.

## Materials and Methods

This study was approved by the Ethical Institutional Review Board, Faculty of Dentistry and the Faculty of Pharmacy, Mahidol University (MU-DT/PY-IRB 2020/DT049).

### Participant selection

Based on a previous study with  $\alpha = 0.05$  and power of 80%, using the software package Primer of Biostatistics (McGraw-Hill, NY, USA). Sample size calculations determined that a minimum of 69 children in each group was enough to achieve statistical difference.<sup>23</sup> A total of 120 primary molar teeth from Thai children aged 2 to 8 years old were selected for the study. All participants were chosen from patients who came to the Pediatric Dental Clinic, Maha Chakri Sirindhorn Dental Hospital, Mahidol University, Nakhon Pathom, Thailand and needed pulpectomy or pulpotomy treatment. Consent forms were signed. One hundred and one samples were diagnosed with irreversible pulpitis and 16 samples with pulp necrosis.

### Clinical examination, inclusion and exclusion criteria

All participants had normal physical growth and cooperated during dental treatment. Any who had any systemic disease(s), taking any kind of antibiotics, had professional fluoride application or any dental treatment within two months prior to the sample collection period were excluded.

A clinical examination was performed by two pediatric dental residents. They were calibrated for clinical examination (kappa co-efficiency = 0.80). Oral

examination was performed following the American Academy of Pediatric Dentistry (AAPD) guideline.<sup>35</sup> The diagnosis of a pulpal and periapical condition was based on the AAPD guidelines.<sup>35</sup> Clinical signs and symptoms of infected primary teeth included pain history, swelling and pathologic mobility (grade I, II). For clinical presentation or pulpal response, the presence of abscess or sinus tract, the presence of tenderness to percussion and tooth mobility were recorded. The roots should exhibit minimal or no resorption. For the diagnosis, tooth was diagnosed with irreversible pulpitis if it had 1) a history of pain; intense, lingering pain to temperature changes, spontaneous pain, diffuse or referred pain 2) Clinical examination; deep caries, response to thermal stimuli, hypersensitive to cold, excessive hemorrhage that is not controlled with a damp cotton pellet after being applied for several minutes 3) Radiographic examination; no evidence found of osseous changes.

Tooth was diagnosed with pulp necrosis if it has 1) A history of pain; a few months ago, or no history of pain 2) Clinical examination; deep caries that can be found on pulpal exposure, no response to thermal stimuli, pain on percussion if PDL (periodontal ligament) around apical region is inflamed 3) Radiographic examination; radiographic change and periapical lesions can be found. Pre-operative radiographs were taken before pulpectomy treatment in order to assess furcation involvement or periapical radiolucency, pathologic external root resorption and internal root resorption.

If the tooth was unrestorable, or root resorption was more than 2/3 of the root length, or the degree of tooth mobility was more than grade II, or showed a significant gingival recession or periodontal pockets deeper than 4 mm, they were excluded.

### Sample collection

A sample collection was performed using an aseptic technique.<sup>36</sup> In each tooth, a single root canal was sampled in order to confine the microbial evaluation to a single ecologic environment. The criteria was to choose the root canal with periapical radiolucency or the largest canal: in the upper molars palatal canal, in the lower molars distal canal.<sup>37,38</sup> The teeth were cleaned with pumice and

isolated with a rubber dam. The operative field was sterilized with 20% iodine solution. An access cavity preparation was accomplished by sterile bur using sterile normal saline for the coolant. A sterile no. 15 K-file (Maillefer, Ballaigues, Switzerland) was introduced to a level approximately one mm short of the tooth apex, then a discrete filing motion was applied. Afterward, two sterile paper points were placed into the canal one by one, with each left for one minute for absorbing all the fluids. In case of a narrow root canal, filing was initiated respectively with files no. 10 and no. 15, without rinsing. These paper points were transferred to microcentrifuge tubes containing 1.0 ml TE buffer and then immediately frozen at -4°C. Samples were transferred to the Oral Biology Laboratory and frozen at -20°C until the DNA extraction process.

#### DNA extraction

DNA was extracted based on enzymatic lysis using a commercial kit (Flavogen, Pingtung, Taiwan) as previously described.<sup>23</sup> The extracted DNA concentration and purity was measured using a spectrophotometer at 260 nm/280 nm (Nanodrop 2000C Thermo Scientific, Delaware, USA).

#### Culture condition and standard strains

Two bacterial strains were used as standard strains. *B. longum* (subspecies 51139) was purchased from BIOTEC (National Center for Genetic Engineering and Biotechnology, Bangkok, Thailand) and cultured on BL agar. *F. nucleatum* (ATCC 25586) was cultured on Brain Heart Infusion agar. Both strains were incubated at 37°C for 24-48 hours in

anaerobic conditions (5% CO<sub>2</sub>). Genomic DNA was extracted from the overnight culture as described above. A ten-fold serial dilution, starting from 10<sup>8</sup> and diluted to 10<sup>2</sup> CFU/ml, was performed.

#### Conventional PCR

Conventional PCR was performed to check all extracted DNA samples with 16srRNA universal primers (Table 1). Conventional PCR was performed as previously described.<sup>22</sup> Thermocycle (GeneAmp PCR System 9600 PCR machine, PerkinElmer, CA, USA) was set at 45 cycles. The procedure started with preheating at 95°C for ten minutes. Each cycle consisted of a denaturing step at 95°C for 30 seconds, annealing at 55.9, extension at 72°C for 30 seconds, and incubation for an additional extension at 72°C for 10 minutes.

#### Quantitative Real-time PCR

Using specific primers (Table 1), the reaction mixture (total volume of 20μl) contained 8.2μl of water, 10μl of 2X KAPA SYBR® FAST qPCR Master Mix, 0.4μl of 10 μM forward and reverse primer, and 1μl of standard bacteria DNA. The thermocycler (C1000™ Thermal cycler and CFX 96 Real-time System) was set for 40 cycles. Each cycle consisted of enzyme activation at 95°C for three minutes, denaturing at 95°C for three seconds, annealing at 55.9, 53°C and 56.3°C for 20 seconds for 16srRNA universal primers, *Bifidobacterium* and *F. nucleatum*, respectively. Melting curves were generated from 60°C to 95°C and read every 0.5°C for five seconds.<sup>23</sup>

Table 1 Primers used in this study

| Primer name         |   | Nucleotide sequence (5' to 3')          | Expected amplicon (basepair) | Annealing Temp (°c) | References                   |
|---------------------|---|-----------------------------------------|------------------------------|---------------------|------------------------------|
| UniversalBAC16S     | F | 5'-TGG AGC ATG TGG TTT AAT TCG A-3'     | 160                          | 55.9                | Sinsimer <i>et al</i> , 2005 |
|                     | R | 5'-TGC GGG ACT TAA CCC AAC A-3'         |                              |                     |                              |
| <i>B. longum</i>    | F | 5'-CTC CTG GAA ACG GGT GG-3'            | 550                          | 53                  | Matsuki <i>et al</i> , 2004  |
|                     | R | 5'-GGT GTT CTT CCC GAT ATC TAC A-3'     |                              |                     |                              |
| <i>F. nucleatum</i> | F | 5'-CGC CCG TCA CAC CAC GAG A-3'         | 75                           | 56.3                | Ammann <i>et al</i> , 2013   |
|                     | R | 5'-ACA CCC TCG GAA CAT CCC TCC TTA C-3' |                              |                     |                              |

## Agarose gel electrophoresis

Amplified PCR products were checked with 2% agarose gel (UltraPure Agarose, ThermoFisher Scientific, USA) which was stained with ethidium bromide and the gel images were captured with a digital imaging system (Molecular Imager® Gel docTM Systems, Bio-Rad Laboratories Inc., CA, USA).

## Statistical Analysis

All data were recorded and analyzed using SPSS 23.0 software (Microsoft Corporation, USA). Data distribution was tested using Kolmogorov-Smirnov ( $p<0.001$ ). The different amounts of two bacteria between two groups using a Mann Whitney U test for non-parametric data ( $p<0.05$ ) were analyzed. Analysis for the correlation between the amount of each bacterium, clinical signs and symptoms and radiographic finding using Spearman's correlation test ( $p<0.05$ ) was carried out.

## Results

Total participants included 120 children, (62 boys (52%) and 58 girls (48%)) with mean age $\pm$ standard deviation  $5.62\pm1.22$  years old. Ninety-five participants (80%) had a history of pain, 83 (69%) presented with clinical signs and symptoms, and 115 (96%) showed radiographic pathology (Table 2). One hundred and one participants (84%) were diagnosed with irreversible pulpitis, and 19 (16%) with pulp necrosis.

There was a 100% (120/120) detection rate using the 16srRNA universal primers. *B. longum* and *F. nucleatum* were detected at 56% (67/120) and 57% (68/120), respectively (Table 3). Range of total bacteria, *B. longum* and *F. nucleatum* detection were  $1.63\times10^2$ - $1.64\times10^7$ , 0-1.

$17\times10^6$  and  $0.202\times10^6$  cells/ml, respectively. Range of the ratio of *B. longum*/total bacteria and *F. nucleatum*/total bacteria were  $0.3.13\times10^{-1}$  and  $0.7.13\times10^{-1}$ , respectively. Mean $\pm$ standard deviation quantities of *B. longum* in irreversible pulpitis group and pulp necrosis group were  $2.84\times10^4$  and  $1.08\times10^5$  cells/ml, respectively. Mean $\pm$ standard deviation quantities of *F. nucleatum* in irreversible pulpitis group and pulp necrosis group were  $1.2\times10^5$  and  $3.07\times10^5$  cells/ml, respectively. The ratio of *B. longum*/total bacteria was correlated with clinical signs and symptoms in only the sensitivity to percussion ( $p=0.043$ ) while the ratio of *F. nucleatum*/total bacteria were correlated with three clinical signs and symptoms which are sensitivity to percussion ( $p=0.027$ ), sensitivity to palpation ( $p=0.001$ ), and the present of gingival abscess ( $p=0.001$ ) (Table 4). When further analyzed the association between bacteria and type of radiographic pathology, results showed that the ratio of *B. longum*/total bacteria were not correlated with any of radiographic pathology. On the other hand, the ratio of *F. nucleatum*/total bacteria were associated with the widening periodontal ligament (PDL) space ( $p=0.004$ ), periapical lesion ( $p=0.028$ ), furcation involvement ( $p=0.002$ ), and root resorption ( $p=0.027$ ) (Table 5).

Table 2 General information of all subjects

| Variables                   | Total subjects N=120 (%)                                  |
|-----------------------------|-----------------------------------------------------------|
| Genders                     | Boys, 62 (52%)<br>Girls, 58 (48%)                         |
| History of pain             | 95 (80%)                                                  |
| Clinical signs and symptoms | 83 (69%)                                                  |
| Radiographic pathology      | 115 (96%)                                                 |
| Diagnosis                   | Irreversible pulpitis 101 (84%)<br>Pulp necrosis 19 (16%) |

Table 3 Bacterial quantities detected by specific primers

| Bacteria            | Prevalence     | Median (cells/ml) | Range (cells/ml)                    |
|---------------------|----------------|-------------------|-------------------------------------|
| Total bacteria      | 120/120 (100%) | $48.8\times10^3$  | $1.63\times10^2$ - $1.64\times10^7$ |
| <i>B. longum</i>    | 67/120 (56%)   | $0.358\times10^3$ | $0.1.17\times10^6$                  |
| <i>F. nucleatum</i> | 68/120 (57%)   | $1.65\times10^3$  | $0.2.02\times10^6$                  |

**Table 4** The association of bacterial proportion with each type of clinical signs and symptoms

| Variables                 | <i>B. longum</i> /total bacteria |         | <i>F. nucleatum</i> /total bacteria |         |
|---------------------------|----------------------------------|---------|-------------------------------------|---------|
|                           | Correlation coefficient          | p-value | Correlation coefficient             | p-value |
| Sensitivity to percussion | 0.185                            | 0.043*  | 0.202                               | 0.027*  |
| Sensitivity to palpation  | 0.053                            | 0.566   | 0.295                               | 0.001*  |
| Gingival abscess          | 0.053                            | 0.566   | 0.304                               | 0.001*  |
| Tooth mobility            | -0.025                           | 0.786   | 0.113                               | 0.218   |

\* Correlation at the significant level of  $p<0.05$

**Table 5** The association of bacterial proportion with each type of radiographic pathology

| Variables             | <i>B. longum</i> /total bacteria |         | <i>F. nucleatum</i> /total bacteria |         |
|-----------------------|----------------------------------|---------|-------------------------------------|---------|
|                       | Correlation coefficient          | p-value | Correlation coefficient             | p-value |
| Disrupt lamina dura   | 0.101                            | 0.274   | 0.165                               | 0.071   |
| Widening PDL space    | 0.066                            | 0.473   | 0.264                               | 0.004*  |
| Periapical lesion     | 0.082                            | 0.372   | 0.201                               | 0.028*  |
| Furcation involvement | 0.080                            | 0.386   | 0.281                               | 0.002*  |
| Root resorption       | -0.065                           | 0.481   | 0.202                               | 0.027*  |

\* Correlation at the significant level of  $p<0.05$

## Discussion

*F. nucleatum* is one of the predominant species that are isolated from acute periapical abscesses in both primary and permanent teeth by the cultured method.<sup>39</sup> Using a PCR technique, Siqueira and colleagues examined bacterial species in samples from pulp necrosis with periapical lesions, and reported that the prevalence of *F. nucleatum* was 14%.<sup>31</sup> Fabris and colleagues investigated 103 necrotic pulp samples and seven fistula samples from primary teeth. They found *F. nucleatum* at 25%.<sup>27</sup> In addition, a study by Yang and colleagues reported that one of the dominant taxa isolated from primary teeth with acute periapical abscesses was *F. nucleatum* at the prevalence of 18% using a polymerase chain reaction-denaturing gradient gel electrophoresis technique (PCR-DGGE).<sup>26</sup> In another study by Topcuoglu and colleagues, they investigated the microbial composition of endodontic infection from 30 root canals in primary teeth using microarray. They found that *F. nucleatum* was the most frequently isolated bacterium, as high as 97%.<sup>40</sup> From our previous study, *F. nucleatum* was found at 99%.<sup>23</sup> In this study, the prevalence of *F. nucleatum* was 57% which

is lower than our previous study, which might be from the difference in sample demographic and the lower pulp necrosis group. Another previous study found the mean level of *F. nucleatum* in the irreversible pulpitis group and pulp necrosis with sinus tract group in permanent teeth were  $15.38 \times 10^5$  and  $5.59 \times 10^5$ , respectively.<sup>41</sup> Their results showed the higher levels of *F. nucleatum* in the irreversible pulpitis group which is different from this study. A different detection rate among studies might be from the different guidelines of pulp diagnosis between permanent and primary teeth and the technique used to identify bacteria. Other reasons contributing to the different prevalence rate might depend on many factors, such as target sample, sample size, severity of infection, technical sensitivity, and microbial identification method.

Several studies previously revealed that *F. nucleatum* has been associated with clinical symptoms. In permanent teeth, *F. nucleatum* was reported to relate with a history of pain, tenderness to percussion, gingiva swelling, fistula, purulent exudate, and periapical radiolucency.<sup>14,42</sup> In addition, some studies in primary teeth

showed that *F. nucleatum* was detected more often in teeth that were tender to percussion and where mobility was present.<sup>14,42</sup> Another study obtained samples from 30 teeth in children with both primary and permanent dentitions found a relationship between *F. nucleatum* and hemorrhagic exudate, purulent exudate, and periapical radiolucency.<sup>39</sup> This study added more correlation between *F. nucleatum* and each type of clinical signs and symptoms and types of radiographic pathology as shown in the results. Correlation analysis between bacterial proportion and clinical signs and symptoms in this study show that sensitivity to percussion, sensitivity to palpation, and gingival abscess were correlated with the proportion of *F. nucleatum*, which is similar to a previous study by Yun and colleagues. They found that *F. nucleatum* was associated with the clinical condition and reflected the progression of endodontic infection in primary teeth.<sup>29</sup> Another study revealed that acute symptoms of pain, history of previous pain, tenderness to percussion and swelling in permanent teeth were associated with *F. nucleatum*.<sup>40</sup> Data from this study help to confirm the role of *F. nucleatum* in the root canal infection in the primary teeth. Previous studies had reported that gram-negative bacteria cell wall containing endotoxin can stimulate the release of bradykinin which is a pain mediator that is associated with acute symptoms such as pain.<sup>43</sup> The apical part of a root canal has low oxygen tension and large availability of proteins and glycoproteins which contributes to anaerobic bacteria establishment. Most of them are strictly anaerobic species, such as *F. nucleatum*, *Porphyromonas endodontalis*, *Tannerella forsythia* and *Treponema denticola*.<sup>43</sup>

This was the first quantitative analysis of *B. longum* in infected root canals in primary teeth in Thai children. The difference between this study and our previous study was that in this study, *B. longum* was specifically detected while in our previous study *Bifidobacterium* genus was identified and results in this study showed that the detection was higher.<sup>23</sup> Our previous study has led us to further evaluate *B. longum* species specifically. Moreover, we would like to confirm the role of these bacteria by selecting study participants from different demographics. Another difference between this study and our previous study was

that in this study, the correlation between these bacteria and radiographic findings was further analyzed which was lacking in our previous study. Most previous studies were done to analyze the association between this bacteria and advanced dental caries. Previous studies reported that *Bifidobacterium* was detected in human saliva, the levels of *Bifidobacterium* in dental plaque were significantly higher in children who had carious lesions compared with caries-free children.<sup>22-24</sup> A previous study found that, in active cavitated enamel lesion, *Bifidobacterium* were notably abundant and present in the outer layers of the biofilm at the cavity entrance.<sup>44</sup> Several previous studies found *Bifidobacterium* mostly in deep dentinal caries.<sup>9,45,46</sup> Previous studies have suggested that bacteria located in advanced dental caries are directly involved in inducing damage and consequent inflammation in the pulp tissue, and *Bifidobacterium* is one of those bacteria that are involved in pulpal inflammation and initiate endodontic infection.<sup>13,47</sup> In addition, it was found in the primary teeth with necrotic pulps in children aged 4-7 years old together with *Streptococcus intermedius*.<sup>37</sup> In this study, it was found that *B. longum* was significantly associated with the sensitive to percussion clinically. *Bifidobacterium* were shown to have similar acidogenicity and aciduricity to *S. mutans* and the ability to produce an acidic environment, to resist low pH and to promote biofilm formation when co-adhered with primary colonizers.<sup>47</sup> The acidogenic and aciduric ability of *B. longum* might play a role in helping it to survive in deep dental caries and invade the pulp in the early stage of pulpitis. Haukioja and colleagues reported that *Bifidobacterium* bound well to *F. nucleatum* coated surfaces, indicating the importance of other oral bacteria in modulating the colonization potential of the strains.<sup>44</sup> This might be one of the reasons that the detection of *Bifidobacterium* was in the same direction as *F. nucleatum*. Taken together, *Bifidobacterium* was detected in the advanced dentinal caries and was found in the early stage of reversible pulpitis. When the reversible pulpitis progressed to irreversible pulpitis or necrotic pulp, *F. nucleatum* was detected more often and correlated with more clinical signs and symptoms and radiographic pathology as mentioned

above. More studies from different populations would be recommended to confirm the relationship between *B. longum* and endodontic infection. This study might not be immediately usable in the clinical application. However, bacterial infection is the cause of caries and pulp infection. This finding could be part of precision preventive dentistry, e.g. to develop a caries risk assessment tool kit from saliva. Or when technology is more accessible, the bacterial biomarker of an individual could be useful to precisely select root canal treatment materials. Furthermore, this study added up the important role of these bacteria and their association with the clinical symptoms and radiographic findings which only a small number of studies were published.

In conclusion, *B. longum* and *F. nucleatum* were detected in more than 50% of the infected root canals of primary teeth. The ratios of *B. longum* and *F. nucleatum* to total bacteria were associated with clinical signs and symptoms of pulp infection in primary teeth. The ratio of *F. nucleatum* to total bacteria was positively correlated with sensitivity to percussion, sensitivity to palpation, gingival abscess, and radiographic pathology including the widening periodontal ligament (PDL) space, periapical lesion, furcation involvement, and root resorption while the ratio of *B. longum* to total bacteria was positively correlated with sensitivity to percussion.

## References

1. James SL, Abate D, Abate KH, Abay SM, Abbafati C, Abbas N, et al. Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. *Lancet* 2018;392(10159):1789-858.
2. The 9th national oral health survey in 2023, Thailand Bangkok: Ministry of Public Health.
3. Heng CC. Tooth decay is the most prevalent disease. *Fed Pract* 2016;33(10):31–3.
4. The 8th National oral health survey in 2017. Thailand Bangkok: Ministry of Public Health.
5. Ledezma-Rasillo G, Flores-Reyes H, Gonzalez-Amaro A, Garrocho-Rangel A, Ruiz Rodriguez M, Pozos-Guillen A. Identification of cultivable microorganisms from primary teeth with necrotic pulps. *J Clin Pediatr Dent* 2010;34(4):329-33.
6. Braga MM, Martignon S, Ekstrand KR, Ricketts DN, Imparato J, Mendes F. Parameters associated with active caries lesions assessed by two different visual scoring systems on occlusal surfaces of primary molars a multilevel approach. *Community Dent Oral Epidemiol* 2010;38: 549-558
7. Mikkelsen L, Theilade E, Poulsen K. Abiotrophobia species in early dental plaque. *Oral Microbiol Immunol* 2000;15(4):263-8.
8. Thurnheer T, Gmür R, Giertsen E, Guggenheim B. Automated fluorescent in situ hybridization for the specific detection and quantification of oral streptococci in dental plaque. *J Microbiol Methods* 2001;44(1):39-47.
9. Mantzourani M, Fenlon M, Beighton D. Association between Bifidobacteriaceae and the clinical severity of root caries lesions. *Oral Microbiol Immunol* 2009a;24(1):32-7.
10. Lima K, Coelho L, Pinheiro I, Rôcas I, Siqueira J. Microbiota of dentinal caries as assessed by reverse-capture checkerboard analysis. *Caries Res* 2011;45(1):21–30.
11. Byun R, Nadkarni M, Chhour K, Martin F, Jacques N, Hunter N. Quantitative analysis of diverse Lactobacillus species present in advanced dental caries. *J Clin Microbiol* 2004;42(7):3128-36.
12. Chhour K, Nadkarni M, Byun R, Martin F, Jacques N, Hunter N. Molecular analysis of microbial diversity in advanced caries. *J Clin Microbiol* 2005;43(2):843-9.
13. Cogulu D, Uzel A, Oncag O, Aksoy S, Eronat C. Detection of Enterococcus faecalis in Necrotic Teeth Root Canals by Culture and Polymerase Chain Reaction Methods. *Eur J Dent* 2007;1(4):216-21.
14. Cogulu D, Uzel A, Oncag O, Eronat C. PCR-based identification of selected pathogens associated with endodontic infections in deciduous and permanent teeth. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 2008;106(3):443-9.
15. Cuoghi A, Bertozi F, Mendonca M, Santos E. Affiliations Expand Loss of space and dental arch Length After the loss of lower primary molar: longitudinal study. *J Clin Pediatr Dent* 1998;22(2): 117-20.
16. Aas J, Griffen A, Dardis S, Lee A, Olsen I, Dewhirst F. Bacteria of dental caries in primary and permanent teeth in children and young adults. *J Clin Microbiol* 2008;46(4):1407-17.
17. Mitrakul K, Vongsavan K, Watcharakirin W, Khererat P. Quantitative analysis of Lactobacillus and Enterococcus faecalis between irreversible pulpitis and pulp necrosis in primary teeth. *Dent Res Oral Health* 2019;2(2):17-31.
18. Nakajo K, Takahashi N, Beighton D. Resistance to acidic environments of caries associated bacteria: Bifidobacterium dentium and Bifidobacterium longum. *Caries res* 2010;44(5):431-7.
19. Chalmers N, Oh K, Hughes C, Pradhan N, Kanasi E, Ehrlich Y, et al. Pulp and plaque microbiotas of Children With severe early childhood caries. *J Oral Microbiol* 2015;7:25951.
20. Tantikalchan S, Mitrakul K. Association between Bifidobacterium and Scardovia Wiggiae and caries-related factors in severe early childhood caries and caries-free Thai children: a quantitative

realtime PCR analysis and a questionnaire cross-sectional study. *Eur Arch Paediatr Dent* 2022;23(3):437-47.

21. Damnoensawat P, Mitrakul K. Quantitative analysis of Bifidobacterium and *Scardovia wiggiae* in dental plaque from children in Northern Thailand and their association with caries factors. *Eur J Dent* 2024;3(13):216-24.
22. Mitrakul K, Chanvitana S, Jeamset A, Vongsawan K. Quantitative analysis of *S. mutans*, *Lactobacillus* and *Bifidobacterium* found in initial and mature plaques in Thai children with early childhood caries. *Eur Arch Paediatr Dent* 2017;18(4):251-61.
23. Piyasoonthorn P, Mitrakul K. Association between *Bifidobacterium* and *Fusobacterium nucleatum* and type of Root Canals Infection in Primary teeth and Clinical Symptom: A Quantitative Real-time PCR Analysis. *SWU Dent J* 2023;16(2):99-113.
24. Jacinto R, Montagner F, Signoretti F, Almeida G, Gomes B. Frequency, Microbial interactions, and antimicrobial susceptibility of *Fusobacterium nucleatum* and *Fusobacterium necrophorum* isolated from primary endodontic infections. *J Endod* 2008;34(12):1451-6.
25. riches TC, de Figueiredo LC, Feres M, de Freitas SFT, Zimmermann GS, Cordeiro MMR. Microbial profile of root canals of primary teeth with pulp necrosis and periradicular lesion. *J Dent Child (Chic)* 2014;81(1):14-9.
26. Yang QB, Fan LN, Shi Q. Polymerase chain reaction-denaturing gradient gel electrophoresis, cloning, and sequence analysis of bacteria associated with acute periapical abscesses in children. *J Endod* 2010;36(2):21823.
27. Fabris A, Nakano V, Avila-Campos M. Bacteriological analysis of necrotic pulp and fistulae in Primary teeth. *J Appl Oral Sci* 2014;22(2):118-24.
28. Guven Y, Ustun N, Aksakal SD, Topcuoglu N, Aktoren O, Kulekci G. Assessment of the endodontic microbiota of abscessed primary teeth using microarray technology. *Indian J Dent Res* 2018;29(6):781-6.
29. Yun KH, Lee HS, Nam OH, Moon CY, Lee JH, Choi SC. Analysis of bacterial community profiles of endodontically infected primary teeth using pyrosequencing. *Int J Paediatr Dent* 2017;27(1):56-65.
30. Silva L, Nelson-Filho P, Faria G, Souza-Gugelmin M, Ito IY. Bacterial Profile in primary teeth with necrotic pulp and periapical lesions. *Braz Dent J* 2006;17(2):144-8.
31. Siqueira Jr JF, Rôcas IN. Community as the unit of pathogenicity: an emerging concept as to the microbial pathogenesis of apical periodontitis. *Oral Surg Oral Med Oral Pathol Oral Radiol Endod* 2009;107(6):870-8.
32. Blome B, Braun A, Sobarzo V, Jepsen S. Molecular identification and quantification of bacteria from endodontic infections using real-time polymerase chain reaction. *Oral Microbiol Immunol* 2008;23(5):384-90.
33. Boutaga K, Van Winkelhoff AJ, Vandenbroucke- Grauls CM, Savelkoul PH. The additional value of real-time PCR in the quantitative detection of periodontal pathogens. *J Clin Periodontol* 2006;33(6):427-33.
34. Sinsimer D, Leekha S, Park S, Marras SA, Koreen L, Willey B, et al. Use of a Multiplex molecular beacon platform for rapid detection of methicillin and vancomycin resistance in *Staphylococcus aureus*. *J Clin Microbiol* 2005;43(9):4585-91.
35. American Academy of Pediatric Dentistry. Pulp therapy for primary and immature permanent teeth. The Reference Manual of Pediatric Dentistry. Chicago, Ill.: American Academy of Pediatric Dentistry 2020:384-92.
36. Brook I, Frazier E, Gher M. Aerobic and anaerobic microbiology of periapical abscess. *Oral Microbiol Immunol* 1991;6(2):123-5.
37. Dige I, Grönkjær L, Nyvad B. Molecular studies of the structural ecology of Natural occlusal caries. *Caries Res* 2014;48(5):451-60.
38. Sassone LM, Fidel RA, Faveri M, Guerra R, Figueiredo L, Fidel SR, et al. A microbiological profile of symptomatic teeth with primary endodontic infections. *J Endod* 2008;34(5):541-5.
39. Kipalev S, Dumani A, Fatih K, Yoldas O, Akcimen B, Dogan M. Detection of Selected anaerobic pathogens in primary and secondary endodontic infections in a Turkish population. *AJMR* 2014;8(13):1460-66.
40. Topcuoglu N, Bozdoğan E, Aktoren O, Kulekci G. Presence of oral bacterial species in primary endodontic infections of primary teeth. *J Clin Pediatr Dent* 2013;38(2):155-60.
41. Gomes B, Pinheiro E, Gadê— Neto C, Sousa E, Ferraz C, Zaia A, et al. Microbiological examination of infected dental root canals. *Oral Microbiol Immunol* 2004;19(2):71-6.
42. Farber P, Seltzer S. Endodontic microbiology. I. Etiology. *J Endod* 1988;14(7):363-71.
43. Torlakovic L, Klepac-Ceraj V, Ogaard B, Cotton S, Paster B, Olsen I. Microbial community succession on developing lesions on human enamel. *J Oral Microbiol* 2012;4.
44. Haukioja A, Yli-Knuuttila H, Loimaranta V, Kari K, Ouwehand AC, Meurman JH, et al. Oral adhesion and survival of probiotic and other lactobacilli and bifidobacteria *in vitro*. *Oral Microbiol Immunol* 2006;21(5):326-32.
45. Ammann T, Bostanci N, Belibasakis G, Thurnheer T. Validation of a quantitative real-Time PCR assay and comparison with fluorescence microscopy and selective agar plate counting for species-specific quantification of an *in vitro* subgingival biofilm model. *J Periodontal Res* 2013;48(4):517-26.
46. Modesto M, Biavati B, Mattarelli P. Occurrence of the family bifidobacteriaceae in human dental caries and plaque. *Caries Res* 2006;40(3):271-6.
47. Matsuki T, Watanabe K, Fujimoto J, Kado Y, Takada T, Matsumoto K, et al. Quantitative PCR with 16S rRNA-gene-targeted species-specific primers for analysis of human intestinal bifidobacteria. *Appl Environ Microbiol* 2004;70(1):167-73.

## บทวิทยาการ

# การประเมินคำตอบของเชทบอทภาษาไทยสำหรับผู้ป่วยที่ได้รับการผ่าตัดขากรรไกรร่วมกับการจัดฟัน

## Assessment of Thai-Language Chatbot Responses for Patients Regarding Orthognathic Surgery

อรรถพล ยงวิกุล<sup>1,2</sup>, อัญญา วิหครัตน์<sup>2</sup>, ณัฐรินทร์ วงศ์สิริฉัตร<sup>3</sup>, ทองนารถ คำใจ<sup>1,4</sup>

Atapol Yongvikul<sup>1,2</sup>, Anya Wihokrat<sup>2</sup>, Nattharin Wongsirichat<sup>3</sup>, Thongnard Kumchai<sup>1,4</sup>

<sup>1</sup>แผนกศัลยกรรมช่องปากและแม็กซิโลเฟซิยล คณะทันตแพทยศาสตร์ มหาวิทยาลัยกรุงเทพนบุรี กรุงเทพมหานคร ประเทศไทย

<sup>2</sup>Department of Oral and Maxillofacial Surgery, Faculty of Dentistry, Bangkokthonburi University Bangkok, Thailand

<sup>2</sup>แผนกศัลยกรรมช่องปากและแม็กซิโลเฟซิยล โรงพยาบาลศัลยกรรมมาสเตอร์พีซ กรุงเทพมหานคร ประเทศไทย

<sup>2</sup>Department of Oral and Maxillofacial Surgery, Masterpiece Plastic Hospital, Bangkok, Thailand

<sup>3</sup>แผนกทันตกรรมจัดฟัน คณะทันตแพทยศาสตร์ มหาวิทยาลัยกรุงเทพนบุรี กรุงเทพมหานคร ประเทศไทย

<sup>3</sup>Department of Orthodontics, Faculty of Dentistry, Bangkokthonburi University Bangkok, Thailand

<sup>4</sup>สำนักคณบดี คณะทันตแพทยศาสตร์ มหาวิทยาลัยกรุงเทพนบุรี กรุงเทพมหานคร ประเทศไทย

<sup>4</sup>Deanery office, Faculty of Dentistry, Bangkokthonburi University Bangkok, Thailand

## บทคัดย่อ

ปัญญาประดิษฐ์ (AI) โดยเฉพาะแบบจำลองภาษาขนาดใหญ่ (LLM) ได้พัฒนาอย่างรวดเร็วในช่วงไม่กี่ปีที่ผ่านมา และถูกนำไปประยุกต์ใช้ในหลายภาคส่วน รวมถึงด้านสุขภาพและทันตกรรม หนึ่งในแอปพลิเคชันที่ได้เด่นคือการพัฒนาเชทบอทที่สามารถสนับสนุนการเดินทางและการประมวลผลภาษาธรรมชาติ (NLP) ซึ่งมีบทบาทในการให้ความรู้แก่ผู้ป่วย โดยเฉพาะการอธิบายขั้นตอนทางการแพทย์ที่ซับซ้อนให้เข้าใจง่าย อย่างไรก็ตาม คุณภาพของข้อมูลที่เชทบอทให้ในภาษาที่ไม่ใช่ภาษาอังกฤษ เช่น ภาษาไทย ยังไม่ได้รับการศึกษามากนัก งานวิจัยนี้มีวัตถุประสงค์เพื่อประเมินคุณภาพของคำตอบภาษาไทยที่สร้างโดยเชทบอทซึ่งขึ้นเคลื่อนด้วย LLM เกี่ยวกับการผ่าตัดขากรรไกรร่วมกับการจัดฟัน (OGS) เพื่อประเมินคุณภาพของข้อมูลที่เชทบอตภาษาไทยซึ่งขึ้นเคลื่อนด้วย LLM ให้แก่ค่าตามที่พับบอยจากผู้ป่วยเกี่ยวกับการผ่าตัดขากรรไกรร่วมกับการจัดฟัน ศัลยแพทย์ช่องปากและแม็กซิโลเฟซิยลที่ได้รับการรับรองจำนวน 2 คน ได้จัดทำชุดคำถามที่พับบอยจำนวน 10 ข้อในภาษาไทยเทียบกับ OGS และนำส่งไปยังแพลตฟอร์มเชทบอต AI จำนวน 4 แห่ง ได้แก่ ChatGPT (GPT-4o), Google Gemini (Gemini 2.0 Flash), Anthropic Claude (Claude 3.5 Sonnet) และ Microsoft Copilot (เวอร์ชันมาตรฐานที่ใช้เหตุผลแบบ O1) โดยใช้เฉพาะเวอร์ชันพรีหรือพื้นฐาน คำตอบจากเชทบอตถูกทำให้มีระบุตัวตนและเข้ารหัสเพื่อปิดบังข้อมูลจากผู้ประเมิน ผู้เขียนช่วยเหลือด้าน OGS จำนวน 2 คนได้ประเมินคำตอบแต่ละชุดอย่างอิสระโดยใช้ Global Quality Score (GQS) ซึ่งครอบคลุม 5 ด้าน ได้แก่ ความถูกต้อง ความครบถ้วน ความชัดเจน ความเกี่ยวข้อง และความสมำเสมอ คะแนนถูกบันทึกใน Microsoft Excel และวิเคราะห์ด้วยสถิติเชิงพรรณนา ความเชื่อมั่นระหว่างผู้ประเมินวัดด้วย intraclass correlation coefficient พบว่า Gemini 2.0 Flash ได้คะแนนสูงสุดในด้านความถูกต้อง ( $3.90 \pm 1.66$ ) รองลงมาคือ Copilot ( $3.40 \pm 1.58$ ), GPT-4o ( $2.80 \pm 1.23$ ) และ Claude 3.5 Sonnet ( $2.40 \pm 1.07$ ) ด้านความครบถ้วน Gemini ได้คะแนนสูงสุด ( $4.70 \pm 0.95$ ) ขณะที่ Claude ได้คะแนนต่ำสุด ( $3.90 \pm 1.10$ ) ด้านความชัดเจน Copilot ได้คะแนนสูงสุด ( $4.50 \pm 0.85$ ) และ Claude ต่ำสุด ( $2.80 \pm 0.79$ ) ด้านความเกี่ยวข้อง Gemini ได้คะแนนสูงสุด ( $4.40 \pm 0.84$ ) และ Claude ต่ำสุด ( $3.30 \pm 0.67$ ) ด้านความสมำเสมอ Copilot ได้คะแนนสูงสุด ( $4.70 \pm 0.48$ ) และ Claude ต่ำสุด ( $3.80 \pm 0.92$ ) ความเชื่อมั่นระหว่างผู้ประเมินโดยรวมอยู่ในระดับดี คุณภาพของคำตอบที่สร้างโดยเชทบอตภาษาไทยซึ่งขึ้นเคลื่อนด้วย LLM ในหัวข้อเกี่ยวกับ OGS มีความแตกต่างกันระหว่างแพลตฟอร์ม โดย Gemini 2.0 Flash แสดงผลการประเมินโดยรวมดีที่สุดในหลายด้าน แม้ GPT-4o จะให้เนื้อหาที่เข้าใจง่ายสำหรับผู้ใช้ทั่วไป เพื่อเพิ่มความน่าเชื่อถือของเชทบอต บุคลากรทางการแพทย์ไทย

ควรมีส่วนร่วมในการสร้างเนื้อหาภาษาไทยที่มีคุณภาพและเข้าถึงได้สำหรับการฝึกโมเดล ขณะเดียวกันสามารถเป็นเครื่องมือเสริมในการให้ความรู้แก่ผู้ป่วย แต่ไม่ควรใช้แทนการปรึกษาแพทย์เชี่ยวชาญ

**คำสำคัญ:** จัดฟัน, แพทย์, ปัญญาประดิษฐ์, ผู้ตัดข้ากรรไกร, โมเดลภาษาขนาดใหญ่

## Abstract

In recent years, artificial intelligence (AI), particularly large language models (LLM), has advanced rapidly and been applied across various sectors, including healthcare and dentistry. A prominent application is the development of chatbots that simulate human-like conversations using natural language processing (NLP). These tools can assist in patient education, especially when providing accessible explanations of complex medical procedures. However, the quality of information they provide in non-English languages, such as Thai, remains underexplored. This study aimed to assess the quality of Thai-language responses generated by LLM-based chatbots regarding orthognathic surgery combined with orthodontic treatment (OGS). To evaluate the quality of information provided by Thai-language LLM-powered chatbots in response to frequently asked patient questions about orthognathic surgery with orthodontic treatment. Two board-certified oral and maxillofacial surgeons created a set of 10 frequently asked questions in Thai about OGS. These were submitted to four major AI chatbot platforms: ChatGPT (GPT-4o), Google Gemini (Gemini 2.0 Flash), Anthropic Claude (Claude 3.5 Sonnet), and Microsoft Copilot (standard version with o1 reasoning), using only their free or basic versions. Chatbot responses were anonymized and coded to blind the evaluators. Two experienced OGS specialists independently assessed each answer using the Global Quality Score (GQS), which evaluates five domains: accuracy, completeness, clarity, relevance, and consistency. Scores were recorded in Microsoft Excel and analyzed using descriptive statistics. Inter-rater reliability was measured using the intraclass correlation coefficient. Gemini 2.0 Flash scored highest in accuracy ( $3.90 \pm 1.66$ ), followed by Copilot ( $3.40 \pm 1.58$ ), GPT-4o ( $2.80 \pm 1.23$ ), and Claude 3.5 Sonnet ( $2.40 \pm 1.07$ ). For completeness, Gemini led again ( $4.70 \pm 0.95$ ), while Claude had the lowest score ( $3.90 \pm 1.10$ ). In clarity, Copilot ranked highest ( $4.50 \pm 0.85$ ), and Claude lowest ( $2.80 \pm 0.79$ ). In relevance, Gemini scored highest ( $4.40 \pm 0.84$ ), while Claude trailed ( $3.30 \pm 0.67$ ). Copilot achieved the highest consistency ( $4.70 \pm 0.48$ ), and Claude the lowest ( $3.80 \pm 0.92$ ). The overall inter-rater reliability for GQS was good. The quality of responses generated by Thai-language LLM chatbots on OGS-related topics varied between platforms. Google Gemini 2.0 Flash demonstrated the highest overall performance across multiple evaluation domains. While GPT-4o produced understandable content for general users. To enhance chatbot reliability, Thai healthcare professionals are encouraged to contribute high-quality, accessible Thai-language content for model training. Chatbots may serve as supplementary tools for patient education but should not replace professional medical consultation.

**Keyword:** Orthognathic Surgery, Chatbot, Artificial Intelligence, Orthodontics treatment, Large Language Model

**Received date:** Aug 15, 2025

**Revised date:** Oct 24, 2025

**Accepted date:** Nov 5, 2025

**Doi:** 10.14456/jdat.2026.5

### ติดต่อเกี่ยวกับบทความ:

นัทธินทร์ วงศิริจัตร แผนกทันตกรรมจัดฟัน คณะทันตแพทยศาสตร์ มหาวิทยาลัยกรุงเทพธนบุรี 16/10 ถ.รัชบุรี แขวงทวีวัฒนา เขต/แขวงทวีวัฒนา กรุงเทพมหานคร 10170 ประเทศไทย โทร: 02-4315383 อีเมล: nattharin\_wong@gmail.com

### Correspondence to:

Nattharin Wongsirichat, Department of Orthodontics, Faculty of Dentistry, Bangkokthonburi University, 16/10 Thawi Watthana, Bangkok 10170, Thailand. Tel: 02-4315383 Email: nattharin\_wong@gmail.com

## บทนำ

การผ่าตัดเลื่อนขากรรไกร (orthognathic surgery: OGS) ร่วมกับการจัดฟัน (Orthodontic treatment) เป็นกระบวนการรักษาที่ซับซ้อนและใช้ระยะเวลานาน รวมถึงต้องอาศัยความร่วมมืออย่างใกล้ชิดระหว่างทันตแพทย์จัดฟัน ศัลยแพทย์ช่องปากและแม็กซิลโลเฟเชียล รวมถึงแพทย์และทันตแพทย์ทั่วไป<sup>1,2</sup> ผู้ป่วยมักดำเนินการเสาะแสวงหาความรู้และคำแนะนำทางการแพทย์จากผู้เชี่ยวชาญเมื่อต้องตัดสินใจเกี่ยวกับแนวทางการรักษา และศึกษาข้อมูลเกี่ยวกับขั้นตอนก่อนและหลังการผ่าตัด ตลอดจนความเสี่ยงที่อาจเกิดขึ้น อย่างไรก็ตาม ความไม่สุภาพในการเข้าถึงผู้เชี่ยวชาญทางสุขภาพตลอดเวลาที่ต้องการ ประกอบกับความสนใจของผู้ป่วยที่จะเรียนรู้จากประสบการณ์ของผู้อื่นที่เคยผ่านการผ่าตัดคล้ายกัน ส่งผลให้ผู้ป่วยจำนวนมากไม่น้อยทันไปค้นคว้าข้อมูลจากแหล่งต่างๆ ในระบบสารสนเทศน์ เช่น อินเทอร์เน็ต<sup>3,4</sup> ซึ่งในปัจจุบันมีสารสนเทศน์ออนไลน์หลายรูปแบบที่ให้ข้อมูลเกี่ยวกับการ OGS ทั้งในรูปแบบข้อความและสื่อภาพ<sup>5-8</sup> เมื่อวาระนั้นกรรมทางวิชาการที่ยึดหลักฐานทางวิทยาศาสตร์จะเป็นแหล่งข้อมูลที่เชื่อถือได้มากที่สุด แต่เนื่องจากส่วนใหญ่มักมุ่งเน้นสื่อสารกันในระหว่างผู้เชี่ยวชาญ และเข้าถึงไม่บ่อยนักโดยตัวผู้ป่วยเอง ทั้งที่ควรเป็นบุคคลผู้ได้รับข้อมูลที่ถูกต้อง ครบถ้วนมากที่สุด อนึ่ง ทั้งยังมีแหล่งข้อมูลอีกประเภทหนึ่งที่เรียกว่าวรรณกรรมสีเทา (grey literature) ซึ่งเป็นข้อมูลที่ไม่มีรูปแบบการนำเสนอที่เป็นมาตรฐานและขาดกระบวนการทบทวนโดยผู้ทรงคุณวุฒิ ส่งผลให้เนื้อหาในแหล่งข้อมูลดังกล่าวอาจคลาดเคลื่อนหรือไม่ครบถ้วน<sup>9,10</sup> อีกช่องทางสำคัญที่ผู้เตรียมเข้ารับการทำ OGS ใช้ในการค้นหาข้อมูลคือสื่อออนไลน์และแพลตฟอร์มต่างๆ เช่น เว็บไซต์คลินิก, แพลตฟอร์มวิดีโอ (YouTube), และสื่อสังคมออนไลน์ ได้แก่ Instagram, Facebook, Bing, เว็บบอร์ดสนทนา ซึ่งผู้ป่วยมักเข้าเยี่ยมชมเพื่อค้นคว้าเกี่ยวกับกระบวนการผ่าตัด อย่างไรก็ตาม การศึกษาประเมินคุณภาพของข้อมูลที่เผยแพร่รับข่าวทางเหล่านี้ พบว่ามีความแตกต่างและผันผวนด้านคุณภาพอย่างมีนัยสำคัญ โดยเฉพาะเว็บไซต์ทั่วไป<sup>4</sup> และเนื้อหาบนแพลตฟอร์มวิดีโอ<sup>5</sup> รวมถึงเว็บบอร์ดสนทนา<sup>4,6,7,11</sup> มักมีเนื้อหาที่ต่างกับมาตรฐาน<sup>5</sup> หรือมีการสอดแทรกอารมณ์และความเห็นส่วนบุคคล เช่น การริวิวจากผู้ป่วยโดยตรง<sup>4,6</sup> ซึ่งอาจทำให้ความถูกต้องแม่นยำของข้อมูลลดลง<sup>6</sup> ดังนั้น จึงมีความจำเป็นที่บุคลากรทางการแพทย์ควรเข้ามามีบทบาทในการชี้แนะผู้ป่วยให้เข้าถึงแหล่งข้อมูลออนไลน์ที่เหมาะสม<sup>6</sup> รวมถึงชี้ให้เห็นว่าแม้ข้อมูลจากอินเทอร์เน็ตจะเข้าถึงได้สะดวก แต่ผู้ป่วยควรตรวจสอบความหลากหลายของข้อมูลทางช่องปากและรูปแบบการนำเสนอเพื่อหลีกเลี่ยงการรับข้อมูลที่ผิดพลาดอันเนื่องมาจากการเผยแพร่จากผู้ใช้งานทั่วไปที่ขาดความรู้ทางการแพทย์ที่ถูกต้อง<sup>6</sup>

ในช่วงไม่กี่ปีที่ผ่านมาเทคโนโลยีปัญญาประดิษฐ์ (artificial intelligence: AI) ได้เติบโตอย่างก้าวกระโดด โดยเฉพาะเทคโนโลยีที่เกี่ยวข้องกับการเรียนรู้ของ machine learning และแบบจำลองภาษาขนาดใหญ่ (large language models: LLM) ซึ่งถูกนำมาใช้ในหลากหลายสาขา รวมถึงทันตกรรมด้วย หนึ่งในแอปพลิเคชันที่สำคัญของ AI คือแชทบอท (AI Chatbot: AICB) ซึ่งสามารถทำความเข้าใจ วิเคราะห์ และตอบสนองต่อคำถามของมนุษย์ได้อย่างเป็นธรรมชาติผ่านกระบวนการประมวลผลภาษาธรรมชาติ (Natural Language Processing: NLP) ซึ่งเป็นแขนงวิชาหนึ่งของ AI<sup>12,13</sup> โดยในปัจจุบัน วิธีการทาง NLP ที่ทันสมัยอาศัยแบบจำลอง LLM เป็นหลัก โดยแบบจำลองเหล่านี้ได้รับการฝึกฝนจากชุดข้อมูลขนาดใหญ่ และสามารถอธิบายการแจกรางเชิงสถิติของคำภาษา อักษรและเครื่องหมายวรรณคดีที่ปรากฏในข้อความที่มนุษย์ได้สร้างขึ้นและเผยแพร่สู่สาธารณะ<sup>13</sup> LLM เป็นระบบที่สามารถตั้งโปรแกรมเพื่อสร้างข้อความที่ถูกต้องและสอดคล้องกับตอบคำถามแปลภาษา และดำเนินงานที่เกี่ยวข้องกับภาษาได้หลากหลายรูปแบบ เมื่อตอนนี้ว่าถูกตอบคำตามโดยมนุษย์<sup>14</sup> การประยุกต์ใช้เทคโนโลยีที่ขับเคลื่อนด้วย AI เหล่านี้มาเป็นส่วนช่วยในงานสาขานักกรรมสั่งผลให้เกิดการเพิ่มขึ้นของศักยภาพในด้านต่างๆ ไม่ว่าจะเป็นการวินิจฉัยโรค การวางแผนการรักษา และกระบวนการทางคลินิก โดยเฉพาะโปรแกรม AICB ที่ขับเคลื่อนด้วย LLM ซึ่งพัฒนาขึ้นบนพื้นฐานของการปฏิสัมพันธ์ระหว่างมนุษย์กับคอมพิวเตอร์อย่างชั้นเชิง ได้โดยมีเป้าหมายเพื่อเลียนแบบบทสนทนาธรรมชาติที่ตอบสนองต่อผู้ใช้งานในสภาพแวดล้อมออนไลน์ได้อย่างเหมาะสมและมีประสิทธิภาพ<sup>13,15</sup>

จากข้อมูลข้างต้นจะเห็นได้ว่า ผู้ป่วยกำลังจะเข้ารับอยู่ในกระบวนการ หรือการทั้งหลังรับการทำ OGS มักต้องการสืบหาข้อมูลที่ถูกต้อง ชัดเจน และเข้าถึงได้ง่ายเพื่อนำมาใช้ประกอบการตัดสินใจด้านการรักษา แม้จะมีแหล่งข้อมูลออนไลน์มามากมาย ทั้งจากเว็บไซต์คลินิก วิดีโอ โซเชียลมีเดีย และเว็บบอร์ดผู้ป่วย แต่การค้นหาข้อมูลนั้นที่ถูกใช้อย่างแพร่หลายในปัจจุบันคือการใช้ AICB เมื่อเวลาเทคโนโลยี AICB ที่ใช้กระบวนการ NLP ถูกนำมาใช้เพิ่มศักยภาพในการสื่อสารข้อมูลทางทันตกรรม แต่ปัจจุบันยังไม่มีการศึกษาใดที่ประเมินประสิทธิภาพของ AICB โดยเฉพาะอย่างยิ่งด้วยภาษาท้องถิ่น คือภาษาไทยซึ่งเป็นภาษาหลักและภาษา franca ของประเทศไทยในการให้ข้อมูลเกี่ยวกับ OGS แก่ผู้ป่วยโดยตรง ดังนั้นการศึกษานี้ จึงมีวัตถุประสงค์เพื่อประเมินคุณภาพ ความถูกต้อง และความเหมาะสมของข้อมูลที่ AICB ภาษาไทยให้แก่ผู้ป่วยในบริบทของการให้ข้อมูลเกี่ยวกับ OGS เพื่อสนับสนุนการตัดสินใจและเพิ่มความเข้าใจของผู้ป่วยอย่างมีประสิทธิภาพ

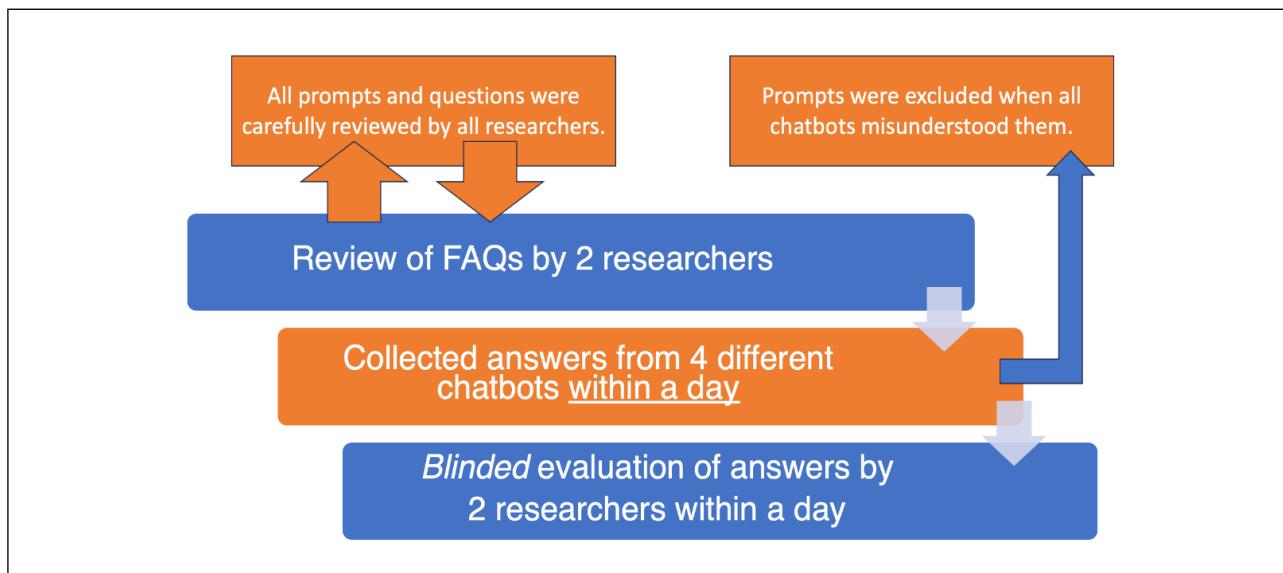
## วัสดุอุปกรณ์และวิธีการศึกษา

เพื่อประเมินคุณภาพในการใช้แบบจำลองภาษาที่บันเกลื่อนด้วยปัญญาประดิษฐ์ (AI-based language models) หรือ AICB ในการให้ข้อมูลแก่ผู้ป่วย แผนผังแสดงขั้นตอนของการศึกษาวิจัยนี้ แสดงไว้ในรูปที่ 1 โดยการศึกษาครั้งนี้ไม่จำเป็นต้องของการรับรองด้านจริยธรรมเนื่องจากไม่มีการใช้ข้อมูลหรือวัสดุที่ได้จากมนุษย์ หรือสัตว์ในการวิจัยแต่อย่างใด กล่าวโดยสรุปการสร้างคำตอบที่มักจะถูกถาม (frequent asked questions) ในการทำ OGS ถูกสร้างโดยวิจัย 2 ราย (A.Y., N.W.) ที่มีประสบการณ์ด้าน OGS รวมทั้งหมด 10 คำตอบหลัก 17 คำตอบย่อยในภาษาไทย (ตารางที่ 1) เพื่อให้มั่นใจว่าคำตอบที่ไม่เหมาะสม ไม่สมบูรณ์ หรือไม่ถูกต้องไม่ได้เกิดจากการออกแบบ Prompt หรือคำตอบที่ไม่ดี ผู้เขียนได้ดำเนินกระบวนการตรวจสอบหลายขั้นตอน เริ่มจากการที่นักวิจัยทุกคนร่วมกันตรวจสอบคำตอบทั้งหมดอย่างรอบคอบ เพื่อยืนยันถึงความเหมาะสม ความชัดเจน และความสอดคล้องกับวัตถุประสงค์ของการศึกษา นอกจากนี้ ยังได้ทำการตรวจสอบคำตอบเพื่อค้นหารูปแบบที่อาจบ่งชี้ถึงปัญหาที่เกิดจากคำตอบมากกว่าความเข้าใจผิดของ AICB เช่น คำตอบที่ ตอบไม่ตรงคำตาม หรือมีภาวะหลอน (Hallucination) พร้อมๆ กันในทุก AICB จากนั้นนำคำตอบถูกป้อนเข้าไปใน AICB โดยหาก AICB มีให้เลือกรหัสการสมัครสมาชิกนิดเดียวค่าบริการ (subscription) จะเลือกชนิดไม่เสียค่าบริการ (free or basic version) จำนวน 4 โปรแกรมที่ถูกใช้งานร่วมกันทั่วโลกในตรมาสที่ 2 ปี 2568 ถึง 89.58%<sup>16</sup> ได้แก่ ChatGPT (GPT-4o, OpenAI, San Francisco, CA) ซึ่งมีจุดเด่นด้านการประมวลผลภาษาที่ลื่นไหลแม่นยำ และสามารถตอบคำตอบทางการแพทย์ได้อย่างครอบคลุมในรูปแบบภาษาที่เข้าใจง่าย, Google Gemini (Gemini 2.0 Flash, Google DeepMind, London, UK) ซึ่งเน้นการอ้างอิงข้อมูลจากการทันหน้าแบบเรียลไทม์ ผ่านระบบของ Google ทำให้เหมาะสมสำหรับคำตอบที่ต้องการข้อมูลปัจจุบัน, Anthropic Claude (Claude 3.5 Sonnet, Anthropic, San Francisco, CA) ที่มีจุดเด่นในด้านการใช้ภาษาที่ถูกตรวจสอบความถูกต้องมาแล้วเท่านั้น และให้ข้อมูลเชิงลึกอย่างรอบคอบเหมาะสมกับผู้ป่วย, และ Microsoft Copilot (Standard Copilot with o1 reasoning, OpenAI & Microsoft, San Francisco, CA & Redmond, WA) ซึ่งผ่านระบบดังเดิมของ GPT เข้ากับ Bing Search ทำให้สามารถสรุปข้อมูลพร้อมลิงก์อ้างอิง และรองรับการใช้งานร่วมกับผลิตภัณฑ์ของ Microsoft ได้อย่างลงตัว<sup>17,18</sup> คำตอบของแต่ละคำตอบจะถูกกำกับไว้ด้วยรหัสเพื่อไม่ให้ผู้ประเมินคุณภาพของคำตอบทราบว่า เป็นคำตอบจากโปรแกรมใด (single blinded) จากนั้นผู้ประเมิน 2 ราย (A.Y., A.W.) ซึ่งมีประสบการณ์ด้าน OGS มากกว่า 10 ปีจะทำการประเมินคุณภาพของคำตอบด้วย global quality score (GQS) แบบ Likert 5 ระดับ (five-point Likert-type rating scale)<sup>19,20</sup>

ซึ่งถูกใช้อย่างแพร่หลายสำหรับประเมินคุณภาพโดยรวม ความเป็นประโยชน์ หรือความน่าเชื่อถือของข้อมูล โดยเฉพาะในการวิจัยด้านข้อมูลสุขภาพ เช่น การประเมินคุณภาพของวิดีโอใน YouTube หรือเนื้อหาออนไลน์<sup>4-6</sup> โดยระดับ 5 (ดีเยี่ยม) หมายถึงเนื้อหาทุกด้านมีคุณภาพสูงสุด ถูกต้อง ครบถ้วน ชัดเจน สอดคล้อง และเกี่ยวข้องโดยไม่มีข้อผิดพลาดเดย, ระดับ 4 (ดี) หมายถึงคุณภาพโดยรวมอาจมีจุดเล็กน้อยที่ไม่สมบูรณ์หรือคลุมเครือ แต่ไม่กระทบสาระสำคัญ, ระดับ 3 (ปานกลาง) หมายถึงคำตอบยังพอใช้ได้ มีข้อเด่นบางด้านแต่มีจุดที่ขาดหรือผิดบ้าง, ระดับ 2 (ต่ำ) หมายถึงมีข้อผิดพลาดที่เห็นได้ชัด หรือขาดคุณภาพในหลายมิติ และระดับ 1 (แย่มาก) หมายถึงคำตอบล้มเหลวในการตอบโจทย์ ไม่มีความถูกต้อง ชัดเจน หรือเกี่ยวข้องเลย เป็นเนื้อหาที่ไม่สามารถใช้งานได้ในเชิงสาระ<sup>20</sup> เกณฑ์ในการประเมินแสดงใน Supplement data 1

หัวข้อการประเมินประกอบด้วย เกณฑ์ในการประเมิน 5 ด้านหลัก ได้แก่ ความถูกต้อง (Accuracy) คือความถูกต้องตามข้อเท็จจริงหรือหลักวิชาการของเนื้อหา ต้องไม่มีข้อมูลผิดพลาดและสอดคล้องกับแหล่งอ้างอิงที่น่าเชื่อถือ ความครบถ้วน (Completeness) คือการนำเสนอข้อมูลที่ครอบคลุมทุกประดิษฐ์ สำคัญโดยไม่ละเว้นส่วนที่จำเป็น ความชัดเจน (Clarity) คือความเข้าใจง่ายของภาษา การจัดเรียงเนื้อหาอย่างมีโครงสร้าง ทำให้ผู้อ่านไม่สับสน ความเกี่ยวข้อง (Relevance) คือการที่เนื้อหาอยู่ในขอบเขตของหัวข้อหรือวัตถุประสงค์ที่กำหนด ไม่มีเนื้อหาอ่อนไหวเรื่อง และความสม่ำเสมอ (Consistency) คือความคงที่ของแนวคิด การใช้คำศัพท์ และข้อมูลภายใต้หัวข้อเดียวกันโดยไม่มีความชัดแย้ง หรือไม่สอดคล้องกัน โดยตารางที่ 2 แสดงเกณฑ์การให้คะแนนในแต่ละด้าน คะแนนระดับคุณภาพของข้อมูลที่ถูกประเมินนั้นจะถูกนำมาบันทึกไว้ในโปรแกรม Microsoft Excel365 (Microsoft office365, Microsoft, Redmond, WA) โดยระหว่างการพิจารณาให้คะแนน ผู้ประเมินจะไม่ทราบชื่อของโปรแกรม AICB ที่เป็นผู้ผลิตคำตอบให้ (single blinded) มีการการวัดค่าความสอดคล้องระหว่างผู้ประเมิน (inter-rater reliability) จากนั้นระดับคะแนนที่ได้จาก 2 ผู้วิจัยจะนำมาคิดค่าเฉลี่ย ก่อนนำไปประมวลผลต่อไป สอดคล้องที่ใช้ในงานวิจัย

มีการคำนวณสถิติเชิงพรรณนา (descriptive statistics) ของข้อมูล ซึ่งรวมถึง ค่าเฉลี่ย และส่วนเบี่ยงเบนมาตรฐาน การเปรียบเทียบคะแนนระหว่าง 4 AICB ถูกวิเคราะห์ด้วย one-way ANOVA การวิเคราะห์ทั้งหมดในโปรแกรมวิเคราะห์สถิติ Jamovi [The jamovi project. (2025). jamovi (Version 2.6) [Computer Software]. Sydney, Australia: The jamovi project. Retrieved from <https://www.jamovi.org>]


## ผลการศึกษา

การประเมินคุณภาพคำตอบจาก AICB ทั้งสี่โปรแกรมแสดงไว้ในตารางที่ 2 พบร่วมกับความสอดคล้องระหว่างผู้ประเมิน (inter-rater reliability) มีค่า  $0.82 \pm 0.07$  ซึ่งอยู่ในระดับดี เมื่อพิจารณาผลโดยรวมในแต่ละมิติ พบร่วมกับความสอดคล้องมีค่าเฉลี่ยสูงที่สุด ( $4.30 \pm 0.79$ ) ขณะที่ด้านความถูกต้องมีค่าเฉลี่ยต่ำที่สุด ( $3.13 \pm 1.47$ ) และแสดงให้เห็นว่าโดยทั่วไปคำตอบจากทุกโปรแกรมมีความคงเส้นคงวาในเชิงตรรกะแต่ยังมีความแตกต่างกันในเรื่องความแม่นยำของข้อมูล เนื้อหาส่วนใหญ่มีความครบถ้วนและชัดเจนในระดับดีถึงดีมาก โดยค่าเฉลี่ยรวมของความครบถ้วน ( $4.18 \pm 1.08$ ) และความชัดเจนของ ( $3.73 \pm 1.11$ ) (รูปที่ 2 และตารางที่ 2) คำตอบทั้งหมดของแต่ละ AICB ถูกแสดงใน Supplement data 2

เมื่อเปรียบเทียบคุณภาพคำตอบระหว่างโปรแกรมพบว่า Gemini 2.0 Flash มีคะแนนสูงที่สุดในหลายด้าน โดยเฉพาะด้านความครบถ้วน ( $4.70 \pm 0.95$ ) และความถูกต้อง ( $3.90 \pm 1.66$ ) รองลงมาคือ Copilot with o1 reasoning ซึ่งโดดเด่นในด้านความสอดคล้อง ( $4.70 \pm 0.48$ ) ส่วน GPT-4o มีคะแนนอยู่ในระดับปานกลาง ในทุกมิติ ขณะที่ Claude 3.5 Sonnet ได้คะแนนต่ำที่สุดในด้าน

ความถูกต้อง ( $2.40 \pm 1.07$ ) ผลลัพธ์นี้สะท้อนให้เห็นถึงความแตกต่างของศักยภาพแต่ละโมเดลในการให้ข้อมูลที่ครบถ้วน ชัดเจน และถูกต้อง โดย Gemini 2.0 Flash มีแนวโน้มให้คำตอบที่ครอบคลุมและเข้าใจง่ายที่สุดในภาพรวม (รูปที่ 2 และตารางที่ 2)

เมื่อวิเคราะห์ผลแยกตามคำถามทั้ง 10 ข้อ (ตารางที่ 1 และรูปที่ 3) พบว่า คำถามข้อ 6 และข้อ 10 ได้คะแนนความถูกต้องสูงที่สุด ( $4.25 \pm 0.80$ ) ขณะที่ ข้อ 8 ได้คะแนนต่ำสุดเพียง  $1.00 \pm 0.80$  คะแนน แม้จะมีคะแนนด้านความครบถ้วนและความชัดเจนสูง แต่อาจสะท้อนถึงปัญหาความถูกต้องของข้อมูลในบางโปรแกรม ในด้านความครบถ้วน คำถามข้อ 7, 8, 9 และ 10 ได้คะแนนเต็ม  $5.00 \pm 0.80$  และแสดงถึงการให้ข้อมูลที่ครอบคลุม ส่วนในด้านความชัดเจน คำถามข้อ 10 ได้คะแนนสูงสุด  $4.50 \pm 0.80$  และ 7 ได้คะแนนต่ำสุด  $3.00 \pm 0.80$  ซึ่งอาจเกี่ยวข้องกับโครงสร้างภาษาหรือรูปแบบการตอบที่ไม่ชัดเจน โดยรวมแล้ว ผลการเปรียบเทียบแสดงให้เห็นว่า Gemini 2.0 Flash มีคุณภาพของคำตอบโดยรวมดีที่สุดในทุกมิติ ขณะที่ Claude 3.5 Sonnet มีความแม่นยำต่ำที่สุด และ Copilot with o1 reasoning ให้คำตอบที่สอดคล้องมากที่สุด



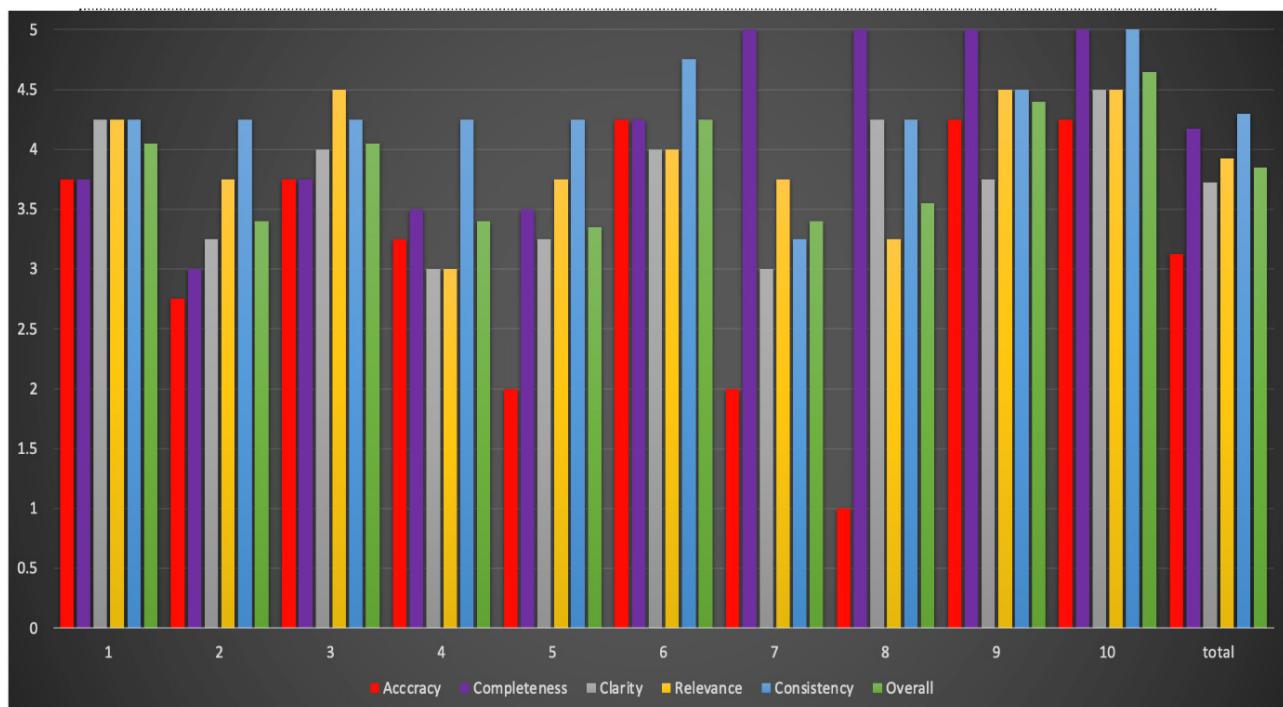
รูปที่ 1 ภาพอธิบายกระบวนการวิจัยเกี่ยวกับการประเมินคุณภาพของคำตอบจากโปรแกรม AI chatbot 4 โปรแกรม ได้แก่ ChatGPT, Gemini, Claude และ Copilot ต่อคำถามที่พบบ่อยเกี่ยวกับ OGS ซึ่งถูกสร้างโดยผู้ใช้ 2 คน รวมทั้งหมด 10 คำถามหลัก จากนั้นได้คำถามเข้าโปรแกรม AI โดยเลือกใช้เวอร์ชันฟรี จากนั้นบันทึกคำตอบโดยไม่เปิดเผยชื่อโปรแกรมให้ผู้ประเมิน (*single-blinded*) ผู้ประเมินคือผู้เชี่ยวชาญ 2 รายประเมินคุณภาพคำตอบโดยใช้ Global Quality Score (GQS) แบ่งเป็น 5 ระดับซึ่งแสดงรายละเอียดในตารางที่ 2

Figure 1 The diagram illustrates the research process regarding the evaluation of answer quality from four AI chatbot programs: ChatGPT, Gemini, Claude, and Copilot, in response to frequently asked questions about OGS. The main questions—10 in total—were created by two researchers. These questions were then input into the AI programs using their free versions. The responses were recorded without revealing which program produced which answer (*single-blinded*). Two experts served as evaluators, assessing the quality of the answers using the Global Quality Score (GQS), which consists of five levels detailed in Table 2

ตารางที่ 1 คำถามที่ถูกถามบ่อย(frequent asked questions: FAQ) ที่ถูกสร้างโดยนักวิจัย 2 ท่าน

Table 1 The frequently asked questions (FAQs) were created by two researchers

| ชุดคำถามหลัก                                                                                                                                | จำนวนคำถามบ่อย |
|---------------------------------------------------------------------------------------------------------------------------------------------|----------------|
| 1. การผ่าตัดจากการรีวิมกับการจัดฟันคืออะไร                                                                                                  | 1              |
| 2. การผ่าตัดจากการรีวิ 1 หรือ 2 ชาครริการ แตกต่างกันอย่างไร                                                                                 | 1              |
| 3. ข้อแตกต่างระหว่างการผ่าตัดก่อนจัดฟัน และการจัดฟันก่อนผ่าตัด สำหรับการผ่าตัดจากการรีวิมกับการจัดฟัน                                       | 1              |
| 4. หลังผ่าตัดจากการรีวิมกับการจัดฟัน จำเป็นต้องมัดฟันหรือไม่                                                                                | 1              |
| 5. การผ่าตัดจากการรีวิมกับการจัดฟันควรไปพบทันตแพทย์จัดฟันก่อนหรือไปพบศัลยแพทย์เม็กซิลโลเฟชียลก่อน เพราะอะไร                                 | 2              |
| 6. ใบหน้าเบี้ยว หรือ รอยยิ้มเบี้ยว สามารถแก้ไขโดยการผ่าตัดจากการรีวิ ได้หรือไม่                                                             | 2              |
| 7. อาหารที่สามารถทานได้หลังจากการผ่าตัดจากการรีวิ และควรทานนานเท่าใด และทานอาหารปกติได้เมื่อใด                                              | 3              |
| 8. สอนการดูแลความสะอาดแปรงในช่องปากหลังผ่าตัดจากการรีวิ                                                                                     | 1              |
| 9. การเลื่อนคาง จำเป็นต้องทำพร้อมกับการเลื่อนขากรรไกรหรือไม่ เพราะเหตุใด                                                                    | 2              |
| 10. หลังการผ่าตัดจากการรีวิ มีโอกาสที่จะได้ผลลัพธ์ไม่เป็นไปตามที่ต้องการหรือไม่ หากไม่ประสบความสำเร็จ สามารถแก้ไขได้หรือไม่ ควรแก้ไขเมื่อใด | 3              |




รูปที่ 2 พารามิเตอร์ที่ใช้ในการประเมิน 5 ด้านหลัก ได้แก่ ความถูกต้อง (Accuracy), ความครบถ้วน (Completeness), ความชัดเจน (Clarity), ความเกี่ยวข้อง (Relevance), และความสม่ำเสมอ (Consistency)

Figure 2 Parameters used to compare evaluation criteria across five main aspects based on the Global Quality Score (GQS): Accuracy, Completeness, Clarity, Relevance, and Consistency.

**ตารางที่ 2 ค่าเฉลี่ย Global Quality Score (GQS) แบ่งตามชนิดของแชทบอท**
**Table 2 Average Global Quality Score (GQS) by Type of Chatbot**

|                                                           | Accuracy<br>(Means±SD) | Completeness<br>(Means±SD) | Clarity<br>(Means±SD) | Relevance<br>(Means±SD) | Consistency<br>(Means±SD) |
|-----------------------------------------------------------|------------------------|----------------------------|-----------------------|-------------------------|---------------------------|
| ChatGPT (GPT-4o)                                          | 2.80±1.23              | 4.10±1.20                  | 3.50±0.97             | 3.80±0.63               | 4.20±0.79                 |
| Google Gemini<br>(Gemini 2.0 Flash)                       | 3.90±1.66              | 4.70±0.95                  | 4.10±1.10             | 4.40±0.84               | 4.50±0.71                 |
| Anthropic Claude<br>(Claude 3.5 Sonnet)                   | 2.40±1.07              | 3.90±1.10                  | 2.80±0.79             | 3.30±0.67               | 3.80±0.92                 |
| Microsoft Copilot (standard<br>Copilot with o1 reasoning) | 3.40±1.58              | 4.00±1.05                  | 4.50±0.85             | 4.20±0.92               | 4.70±0.48                 |
| <b>Total</b>                                              | <b>3.13±1.47</b>       | <b>4.18±1.08</b>           | <b>3.73±1.11</b>      | <b>3.93±0.86</b>        | <b>4.30±0.79</b>          |
| <i>P</i> -value <sup>†</sup>                              | 0.13                   | 0.33                       | 0.002*                | 0.03*                   | 0.07                      |

<sup>†</sup> เปรียบเทียบ one-way ANOVA ระหว่าง AICB ทั้ง 4 โปรแกรม

**รูปที่ 3 การประเมินแยกตามคำถามทั้ง 10 ข้อ เมื่อคิดค่าเฉลี่ยคะแนนของทุกโปรแกรมแชทบอทแยกตามคำถาม**
**Figure 3 Evaluation results by individual question across all 10 questions, showing the average score of each chatbot program per question**

## บทวิจารณ์

จากการศึกษานี้สามารถสรุปได้เท่านี้ว่า 4 โปรแกรมที่ขึ้นเคื่อนด้วย LLM ในการให้ข้อมูลทางทันตกรรมเฉพาะทางเกี่ยวกับ OGS โดยการประเมินคุณภาพคำตอบของ AICB ทั้ง 4 โปรแกรม ได้แก่ GPT-4o, Gemini 2.0 Flash, Claude 3.5 Sonnet และ Standard Copilot with o1 reasoning ผ่านเกณฑ์ GQS ใน 5 ด้าน

คือ ความถูกต้อง, ความครบถ้วน, ความชัดเจน, ความเกี่ยวข้อง และ ความสม่ำเสมอ) พบว่า AICB แต่ละตัวให้ผลลัพธ์ที่แตกต่างกัน โดยเฉพาะเมื่อพิจารณาค่าเฉลี่ยแต่ละด้าน ค่าเฉลี่ยของความถูกต้อง โดยรวมอยู่ที่  $3.13\pm1.47$  ซึ่งถือว่าอยู่ในระดับปานกลาง โดย Gemini 2.0 Flash ให้คะแนนสูงที่สุดที่  $3.90\pm1.66$  ขณะที่ Claude 3.5 Sonnet มีคะแนนต่ำที่สุดที่  $2.40\pm1.07$  แสดงถึงความแตกต่าง

ในการประมวลผลเนื้อหาทางคลินิก ในด้านความสมบูรณ์ ซึ่งมีค่าเฉลี่ยรวม  $4.18 \pm 1.08$  นับว่าอยู่ในระดับดี Gemini 2.0 Flash ยังคงเป็นโปรแกรมที่ให้คะแนนสูงสุด ( $4.70 \pm 0.95$ ) ในขณะที่ Claude 3.5 Sonnet ให้ค่าต่ำสุดที่  $3.90 \pm 1.10$  ด้าน ความชัดเจน มีค่าเฉลี่ยรวมอยู่ที่  $3.73 \pm 1.11$  โดย Standard Copilot with o1 reasoning ให้คะแนนสูงสุดถึง  $4.50 \pm 0.85$  ขณะที่ Claude 3.5 Sonnet ได้ต่ำสุดที่  $2.80 \pm 0.79$  สะท้อนให้เห็นถึงความแตกต่าง 在ในการเลือกใช้ภาษาที่เข้าใจง่ายและเหมาะสมกับผู้ป่วย ในด้าน ความเกี่ยวข้องค่ารวมเฉลี่ยอยู่ที่  $3.93 \pm 0.86$  โดย Gemini 2.0 Flash ได้คะแนนสูงสุดที่  $4.40 \pm 0.84$  ขณะที่ Claude 3.5 Sonnet อยู่ที่  $3.30 \pm 0.67$  ซึ่งจากการประเมินทางสถิติพบว่า 2 ด้านคือความ ชัดเจนและความเกี่ยวข้องมีความแตกต่างกันอย่างมีนัยสำคัญ ทางสถิติ และสุดท้ายในด้าน ความสำมั่นเสมอค่าเฉลี่ยรวมอยู่ที่  $4.30 \pm 0.79$  ซึ่งเป็นด้านที่มีคะแนนเฉลี่ยรวมสูงที่สุด โดย Standard Copilot with o1 reasoning ได้คะแนนสูงสุดที่  $4.70 \pm 0.48$  ขณะที่ Claude 3.5 Sonnet ได้คะแนนต่ำสุดที่  $3.80 \pm 0.92$  ผลลัพธ์เหล่านี้ชี้ให้เห็นว่าแม้ AICB ทุกตัวจะสามารถตอบคำถาม ที่ครอบคลุมและมีความสำมั่นเสมอในระดับหนึ่ง แต่ยังมีความ แปรปรวนด้านความถูกต้องซึ่งอาจทำให้ผู้ป่วยได้รับข้อมูลที่ผิดพลาด จนนำไปสู่ผลลัพธ์ที่ไม่คาดคิดได้ เช่นเข่นเดียวกับความชัดเจน และความเกี่ยวข้องซึ่งถือเป็นองค์ประกอบสำคัญว่าของผู้ป่วยว่า จะเข้าใจชุดข้อมูลนั้นหรือไม่ก็ยังพวนความแตกต่างของค่าเฉลี่ยของ แต่ละโปรแกรมอย่างมีนัยสำคัญ เมื่อวิเคราะห์ลึกลงไปในระดับราย คำถามยังพบความแตกต่างในคุณภาพของคำตอบอีกรอบหนึ่ง เช่น คำตอบของคำถามข้อ 6 และข้อ 10 ได้คะแนนความถูกต้องสูงสุด ที่  $4.25$  คะแนน แสดงถึงความสามารถของ AICB ในการตอบคำถาม เชิงคลินิกที่มีขอบเขตชัดเจนและเป็นที่ยอมรับในวงการแพทย์ ขณะ ที่คำถามข้อ 8 (สอนการดูแลความสะอาดด้วยแปรงในช่องปากหลัง OGS) ได้คะแนนความถูกต้องต่ำสุดเพียง  $1.00$  คะแนน สาเหตุหลักๆ ที่คะแนนความถูกต้องต่ำในข้อนี้คือการแนะนำให้ลึกเลี้ยงการ แปรงฟันหลังผ่าตัดตั้งแต่ 24 ชั่วโมงจนถึง 2 สัปดาห์ ซึ่งอาจเกิด จากความซับซ้อนของการดูแลหลังผ่าตัดที่ต้องการคำแนะนำเฉพาะ บุคคล รวมถึงการขาดข้อมูลที่ถูกต้องแหล่งข้อมูลที่เป็นภาษาไทย ที่ใช้เป็นแหล่งข้อมูลสำหรับ AICB ซึ่งอาจนำมาจากการเขียน บทความโดยผู้ที่เคยทำการผ่าตัดมาก่อนหน้าเอง และในเว็บไซต์ ของสถานพยาบาลซึ่งอาจไม่ได้ถูกเขียนโดยผู้เชี่ยวชาญเอง<sup>21,22</sup> การวิจัยนี้จึงเน้นย้ำถึงความจำเป็นในการประเมินคุณภาพของ คำตอบอย่างรอบด้าน และแสดงให้เห็นถึงความขาดแคลนของ ข้อมูลเกี่ยวกับการดูแลตนเองหลังผ่าตัดในโมเดลภาษาไทย ซึ่งให้ เห็นหน้าที่ของผู้เชี่ยวชาญเฉพาะทางโดยเฉพาะอย่างยิ่งศัลยแพทย์ ช่องปากและแมกนิซิลโลเฟเชียล หรือทันตแพทย์จัดฟันในการการ

เขียนบทความภาษาไทย เพื่อสร้างข้อมูลที่ถูกต้องน่าเชื่อถือเพิ่ม เข้าไปใน LLM ของ AICB ต่างๆ

งานวิจัยนี้ได้คัดเลือก AICB ที่เป็นที่นิยมใช้ทั่วไปจำนวน 4 AICB โปรแกรมดังกล่าวถูกเลือกเนื่องจากข้อมูลการใช้งานและ ปริมาณการเข้าถึงที่เปิดเผยต่อสาธารณะล่าสุดแสดงให้เห็นว่าโปรแกรม เหล่านี้รวมกันของส่วนแบ่งตลาดของ AICB ด้านการสนทนาเป็น ส่วนใหญ่ และมีการใช้งานอย่างแพร่หลายในกลุ่มผู้ใช้ทั่วไปที่นิยม ผู้เชี่ยวชาญด้านเทคโนโลยี ทั้ง 4 AICB นี้ ทำให้เราสามารถครอบคลุม เครื่องมือที่ได้รับความนิยมสูงสุดในหมู่ผู้บริโภค 16 เมื่อจะมีเขต บทนี่ ๆ ถูก เช่น Perplexity (Perplexity, Perplexity AI, San Francisco, CA) หรือ Deepseek (DeepSeek-V2, DeepSeek AI, Shanghai, China) อย่างไรก็ตามควรตระหนักว่าส่วนแบ่งตลาด ของระบบเหล่านี้มีการเปลี่ยนแปลงอยู่ตลอดเวลา ดังนั้นงานวิจัยนี้ จึงสะท้อนให้เห็นถึงภาพรวม ณ ช่วงเวลากลางปี พ.ศ.2568 เท่านั้น เมื่อเปรียบเทียบกับการศึกษาในภาษาอังกฤษที่คล้ายกัน ใน วรรณกรรมส่วนใหญ่ที่เกี่ยวข้องกับ AICB ทางการแพทย์ มักมุ่งเน้น ไปที่การศึกษาการทำงานของ ChatGPT โดยหนึ่งในการศึกษา ครั้งแรกๆ ChatGPT ได้ทำการวิเคราะห์เนื้อหาของคำตอบที่สร้าง โดย AI เกี่ยวกับการจัดฟันด้วยเครื่องมือใส (orthodontic clear aligners) โดยพบว่าความถูกต้องโดยรวมของคำตอบจากเวอร์ชัน แรกเริ่มของ ChatGPT ยังไม่เพียงพอ และไม่มีการอ้างอิงแหล่ง ข้อมูลวิชาการที่ชัดเจน พร้อมนั้นยังข้อจำกัดของ AICB ในการให้ ข้อมูลที่เป็นปัจจุบันและถูกต้อง<sup>23</sup> Duran และคณะ<sup>24</sup> รายงานว่า ChatGPT สามารถให้ข้อมูลที่มีความน่าเชื่อถือและคุณภาพในระดับสูง เกี่ยวกับภาวะปากเหงะเพดานโหง แต่มีความยากในการอ่านเข้าใจ และข้อมูลที่ได้รับควรถูกตรวจสอบความถูกต้องโดยผู้เชี่ยวชาญ ทางการแพทย์ ขณะที่ Kiliç และคณะ<sup>21</sup> ได้ศึกษาความน่าเชื่อถือ และความสามารถในการอ่านของคำตอบต่อคำถามทางทันตกรรม จัดฟันโดยใช้ ChatGPT เปรียบเทียบระหว่างรุ่นใหม่ และรุ่นก่อนหน้า พบว่าความน่าเชื่อถือของคำตอบอยู่ในระดับปานกลางและสรุปว่า ChatGPT ยังไม่อาจถือว่ามีความถูกต้องทางวิทยาศาสตร์ได้ เนื่องจาก ไม่มีการอ้างอิงแหล่งข้อมูล Demirsoy และคณะ<sup>22</sup> ประเมินความ น่าเชื่อถือของข้อมูลที่ผลิตโดย ChatGPT-4 โดยพิจารณาจากความ ถูกต้องและความเกี่ยวข้องของคำตอบ โดยให้ทันตแพทย์จัดฟัน นักศึกษาทันตแพทย์ และผู้ป่วยเป็นผู้ประเมิน ผลการศึกษาสรุปว่า ChatGPT มีศักยภาพที่สำคัญในการให้ข้อมูลและให้ความรู้แก่ผู้ป่วย หากได้รับการพัฒนาและปรับปรุงแก้ไขอย่างเหมาะสม สำหรับการ ศึกษานี้ พบว่า ChatGPT-40 ซึ่งเป็นเวอร์ชันปัจจุบัน สามารถให้ คำตอบเกี่ยวกับการถอนฟันเพื่อการจัดฟันในระดับที่มีคุณภาพและ ความถูกต้องดี ซึ่งแสดงให้เห็นว่าระบบภาษาที่พัฒนาขึ้นของ LLM อาจสามารถให้คำตอบที่แม่นยำและมีคุณภาพยิ่งขึ้น การศึกษานี้

ประเมินความสามารถด้านความซับซ้อนด้านการอ่าน (readability) ของข้อมูลที่สร้างโดย ChatGPT-3.5, ChatGPT-4, Gemini และ Copilot ให้ยกับเครื่องมือจัดพื้นแบบใส่โดยใช้ตัวชี้ Flesch Reading Ease Score (FRES) ผลการศึกษาพบว่าคำต่อจาก AICB ที่ใช้ AI ทั้งหมดมีระดับความยากในการอ่านค่อนข้างสูง ซึ่งสอดคล้องกับผลการประเมินด้านความสามารถในการอ่านของ การศึกษานี้ ทั้งนี้ผู้วิจัยเสนอว่า ข้อความควรถูกปรับให้ง่ายขึ้นโดยการลดจำนวนประโยคที่ยาวและลดการใช้คำพิเศษที่ซับซ้อน เพื่อส่งเสริมความเข้าใจและความสามารถในการเข้าถึงข้อมูลของผู้รับสารได้ดียิ่งขึ้น<sup>25</sup> สิ่งหนึ่งที่น่าสังเกตในการศึกษานี้คือการเลือกปริมาณคำถ้าที่จำกัด การประเมินแบบสอบถามที่จำกัดเพียงผู้เชี่ยวชาญเท่านั้นและใช้เครื่องมือในการวัดผลเพียงชนิดเดียวคือ GQS การหาเครื่องมืออื่นๆ เช่น DISCERN<sup>26</sup> หรือ mDISCERN<sup>27</sup> อาจถูกนำมาใช้ประกอบในการศึกษาต่อๆ ไป ขณะเดียวกันการเพิ่มกลุ่มบุคคลทั่วไป เข้ามาเป็นผู้ประเมินอีกกลุ่มหนึ่ง อาจช่วยเสริมความแข็งแกร่งให้กับผลการวิจัยได้ยิ่งไปกว่านั้น ในการประเมินด้านความซับซ้อนการมีส่วนร่วมจากบุคคลทั่วไปจะเป็นประโยชน์อย่างยิ่ง เนื่องจากพิจารณาจากความสามารถระดับศักดิ์ที่เทคนิคหรือภาษาเฉพาะทางที่ผู้ใช้ขาดความรู้อาจมองข้ามไป<sup>22,25</sup> แต่ถึงอย่างไรการที่ผู้วิจัยให้ผลสอดคล้องกันน่าจะเกิดจากการพยายามมองในมุมมองของบุคคลทั่วไปในทัวร์ขึ้นนี้

ปัญหานี้ที่พบได้ปอยในการศึกษาที่ประเมินความถูกต้องของคำตอบจาก AICB คือการให้ข้อมูลที่คลาดเคลื่อนหรือไม่ถูกต้องตามข้อเท็จจริงซึ่งเรียกว่าภาวะ Hallucination ปรากฏการณ์นี้ไม่ใช่การจะให้ข้อมูลที่เท็จ แต่เป็นผลจากกลไกการทำงานที่เน้นการทำนายลำดับคำถัดไปที่มีความเป็นไปได้ทางสถิติสูงสุด (Probabilistic Next-Token Prediction) มากกว่าการยึดโยงกับข้อเท็จจริง (Grounding) ปรากฏการณ์นี้ในบริบททางการแพทย์ ถือว่ามีความเสี่ยงสูงมาก เพราะคำตอบที่ไม่ถูกต้องเพียงเล็กน้อย เช่น ข้อมูลผิด หรือแนวทางการรักษาที่ไม่เป็นไปตามมาตรฐาน อาจนำไปสู่ผลลัพธ์ที่เป็นอันตรายถึงชีวิตได้ โดยคำตอบในลักษณะนี้มักมีรูปแบบประโภคที่ถูกต้องทั้งในเชิงไวยากรณ์และความหมาย แต่เนื่องจากลับผิดจากข้อเท็จจริงหรือขาดสาระสำคัญ<sup>28,29</sup> สาเหตุที่อาจนำไปสู่การเกิด hallucination มีได้หลายประการ เช่น ข้อจำกัดของกระบวนการสร้างข้อความของ LLM การขาดการอัปเดตข้อมูลแบบเรียลไทม์ การไม่มีการเข้าถึงฐานข้อมูลทางวิชาชีพ และความชัดช้อนของบริบททางคลินิกที่ต้องใช้ความเข้าใจในหลายปัจจัยร่วมกัน รวมไปถึงข้อมูลวิชาการภาษาไทยคุณภาพสูงโดยผู้เชี่ยวชาญ ซึ่งเป็นกลไกสำคัญในการ Grounding ความรู้ข้อมูลเดลخ้าบกับข้อเท็จจริง ที่ตรวจสอบได้ในการศึกษาของ Alkuraya และคณะ<sup>30</sup> พบว่า AICB ChatGPT, Claude และ Bard สามารถระบุรูปแบบการถ่ายทอดทางพันธุกรรมของโรคได้อย่างถูกต้อง แต่กลับคำนวนความน่าจะเป็นของการมีบตรที่มีสีสภาพดีได้ไม่ถูกต้อง ซึ่งอาจเกิดจากข้อจำกัด

ของ AICB ในการจัดการกับปัญหาทางการแพทย์ที่มีความซับซ้อน และต้องอาศัยตัวแปรหลายปัจจัยในการวิเคราะห์หรือย่างถูกต้องในการศึกษาเนื่องจากมีจำนวนหนึ่งของ Claude 3.5 Sonnet ในทัวร์ข้อการเลื่อนคง “จำเป็นต้องทำพร้อมกับการเลื่อนขักรรกรีบรื่นไม่ เพราะเหตุใด” โดย Claude 3.5 Sonnet ตอบในทางตรงกันข้ามว่า การเลื่อนคงสามารถทำการเลื่อนขักรรกรีบไปพร้อมกันได้ หมายถึง การทำหัตถการเลื่อนคงเป็นหัตถการหลัก และ OGS เป็นหัตถการเสริม (adjunctive treatment) ด้วยเหตุนี้การศึกษานี้จึงไม่เพียง แต่ชี้ให้เห็นถึงความแตกต่างระหว่าง AICB แต่ล่ำตัวแต่ยังสะท้อนถึง ข้อจำกัดของเทคโนโลยี LLM ในภาษาท้องถิ่น<sup>31</sup> ซึ่งรายงานฉบับนี้ มุ่งให้ข้อมูลด้านสุขภาพในบริบทของภาษาไทย ซึ่งยังขาดงานวิชาการภาษาไทยที่ LLM สามารถเข้าถึงเพื่อนำไปสังเคราะห์เป็นบทความใหม่ได้ การยกระดับคุณภาพการตอบสนองภาษาไทยของระบบ AICB จึงมีอาจพึงพาเพียงการถ่ายโอนความรู้ข้ามภาษา (Cross-Lingual Transfer) จากแหล่งข้อมูลต่างประเทศได้เท่านั้น หากแต่จำเป็นต้องลงทุนสร้างข้อมูลต้นน้ำที่เป็นบทความวิชาการภาษาไทยคุณภาพสูง เช่น บทความจากการสารทางการแพทย์ที่ผ่านการตรวจสอบโดยผู้เชี่ยวชาญ มีความถูกต้องทางวิชาการ (Academic Fidelity) และความเหมาะสมสมใช้งานธรรม (Cultural Appropriateness) เพื่อเป็นเสาหลักในการแก้ไขปัญหาความเหลื่อมล้ำทางข้อมูล (Data Inequity) และลดความเสี่ยงของการเกิดอาการหลอน<sup>32-35</sup> อันจะนำไปสู่การตัดสินใจของผู้ป่วยที่ปลดภัยและเกิดประโยชน์สูงสุดอย่างแท้จริง ทั้งนี้คุณภาพของคำตอบจาก AICB มีลักษณะเป็นพลวัต เนื่องจากระบบมีการพัฒนาข้อมูลและไม่เดล oy่างต่อเนื่อง ทำให้ผลการวิจัยในช่วงเวลาหนึ่งอาจไม่สะท้อนคุณภาพของโปรแกรมในอนาคตได้อย่างแท้จริง ในแง่மุมนี้ก็เป็นโอกาสที่ฝ่ายกำหนดนโยบายควรตระหนักว่าในยุคแห่งปัญญาประดิษฐ์การลงทุนในข้อมูลทางการแพทย์ภาษาไทยคุณภาพสูง คือการลงทุนในความปลดภัยและคุณภาพชีวิตของผู้ใช้ภาษาไทยในอนาคต

สรุปผลการศึกษา

การศึกษาที่ประเมินคุณภาพคำตอบจากระบบ AICB ภาษาไทยที่ขึ้นเคลื่อนด้วย LLM ในการให้ข้อมูลเกี่ยวกับ OGS พบว่า แต่ละ AICB มีจุดเด่นและข้อจำกัดแตกต่างกันไป โดย Google Gemini 2.0 Flash ได้คะแนนเฉลี่ยสูงสุดในหลายด้าน ขณะที่ Microsoft Copilot โดยเด่นในเรื่องความชัดเจนและความสมบูรณ์ ส่วน ChatGPT-4o สามารถสื่อสารได้เข้าใจง่าย เหมาะสมสำหรับผู้ไม่มีพื้นฐานทางการแพทย์ ในขณะที่ Claude 3.5 Sonnet มีคะแนนต่ำสุดในหลายด้าน สะท้อนข้อจำกัดในการประมวลผลข้อมูลทางการแพทย์ในภาษาไทย ผลการศึกษาพบว่าการพัฒนาเนื้อหาวิชาการภาษาไทยที่มีคุณภาพและเข้าถึงได้โดย LLM มีความสำคัญอย่างยิ่ง เพื่อให้ระบบสามารถสังเคราะห์ข้อมูลที่ถูกต้องแม่นยำและเหมาะสม

กับบริบททางวัฒนธรรมของไทย ทั้งนี้ AICB ภาษาไทยยังคงมีศักยภาพในการให้ข้อมูลเบื้องต้นแก่ผู้ป่วยเกี่ยวกับ OGS แต่ควรใช้เป็นเครื่องมือเสริมด้วยความระมัดระวัง พร้อมแนะนำให้ผู้ป่วยปรึกษาผู้เชี่ยวชาญทางสุขภาพเพื่อประกอบการตัดสินใจอย่างถูกต้อง และปลอดภัย นอกจากนี้ผู้จัดขอเสนอให้พัฒนาระบบแนวปฏิบัติ (Guideline) สำหรับบุคลากรทางการแพทย์เพื่อแนะนำผู้ป่วยในกรณี AICB ค้นหาข้อมูลสุขภาพอย่างปลอดภัยและมีประสิทธิภาพ เพื่อส่งเสริมการใช้งานเทคโนโลยีนี้อย่างเหมาะสมและลดความเสี่ยงจากการตีความข้อมูลผิดพลาด

## กิตติกรรมประกาศ

ขอบคุณ ศ.เกียรติคุณ ทพ.นธัณเมศร์ วงศ์ศรีฉัตร, รศ.ดร.รัชชพิน ศรีสัจจะลักษณ์ และคณาจารย์คณะทันตแพทยศาสตร์ มหาวิทยาลัยกรุงเทพธนบุรี

## เอกสารอ้างอิง

1. Huh JK. Orthognathic surgery of temporomandibular disorders. *J Korean Assoc Oral Maxillofac Surg* 2021;47(2):63-4.
2. Zammit D, Ettinger RE, Sanati-Mehrizi P, Susrarla SM. Current trends in orthognathic surgery. *Medicina (Kaunas)* 2023;59(12):2100.
3. Pithon MM, dos Santos ES. Information available on the internet about pain after orthognathic surgery: a careful review. *Dental Press J Orthod* 2014;19(6):86-92.
4. Engelmann J, Fischer C, Nkenke E. Quality assessment of patient information on orthognathic surgery on the internet. *J Craniomaxillofac Surg* 2020;48(7):661-5.
5. Hegarty E, Campbell C, Grammatopoulos E, DiBiase AT, Sherriff M, Cobourne MT. YouTube™ as an information resource for orthognathic surgery. *J Orthod* 2017;44(2):90-6.
6. Bhamrah G, Ahmad S, NiMhurchadha S. Internet discussion forums, an information and support resource for orthognathic patients. *Am J Orthod Dentofacial Orthop* 2015;147(1):89-96.
7. Larsen MK, Thygesen TH. Orthognathic surgery: outcome in a Facebook group. *J Craniofac Surg* 2016;27(2):350-5.
8. Alsuhaym O, Aldawas I, Maki F, Alamro M, Alshehri K, Alharthi Y. Does social media affect a patient's decision to undergo orthognathic surgery? *Int J Environ Res Public Health* 2023;20(12):6103.
9. Chowdhury N, Khalid A, Turin TC. Understanding misinformation infodemic during public health emergencies due to large-scale disease outbreaks: a rapid review. *Z Gesundh Wiss* 2023;31(4):553-73.
10. Paez A. Gray literature: An important resource in systematic reviews. *J Evid Based Med* 2017;10(3):233-40.
11. Buyuk SK, Imamoglu T. Instagram as a social media tool about orthognathic surgery. *Health Promot Perspect* 2019;9(4):319-22.
12. Strunga M, Urban R, Surovková J, Thurzo A. artificial intelligence systems assisting in the assessment of the course and retention of orthodontic treatment. *Healthcare (Basel)* 2023;11(5):683.
13. Eggmann F, Weiger R, Zitzmann NU, Blatz MB. Implications of large language models such as ChatGPT for dental medicine. *J Esthet Restor Dent* 2023;35(7):1098-102.
14. Shool S, Adimi S, Saboori Amleshi R, Bitaraf E, Golpira R, et al. A systematic review of large language model (LLM) evaluations in clinical medicine. *BMC Med Inform Decis Mak* 2025;25(1):117.
15. Thurzo A, Urbanová W, Novák B, Czako L, Siebert T, Stano P, et al. Where is the artificial intelligence applied in dentistry? systematic review and literature analysis. *Healthcare (Basel)* 2022;10(7):1269.
16. StatCounter Global Stats. AI Chatbot Market Share [Internet]. Dublin: StatCounter; 2025 [cited 2025 Oct 19]. Available from: <https://gs.statcounter.com/ai-chatbot-market-share#quarterly-202503-202503-bar>
17. Hochmair HH, Juhász L, Kemp T. Correctness comparison of ChatGPT-4, Gemini, Claude-3, and Copilot for spatial tasks. *Transactions in GIS*. 2024 Nov;28(7):2219-31.
18. Mavrych V, Yaqinuddin A, Bolgova O. Claude, ChatGPT, Copilot, and Gemini performance versus students in different topics of neuroscience. *Adv Physiol Educ*. 2025 Jun 1;49(2):430-437. doi: 10.1152/advan.00093.2024. Epub 2025 Jan 17. PMID: 39824512.
19. Feinberg I, Ogrordnick M, Bernhardt J. COVID-19 Vaccine Videos: Health Literacy Considerations. *Health Lit Res Pract*. 2023 Jun; 7(2):e111-e118. doi: 10.3928/24748307-20230523-02. Epub 2023 Jun 1. PMID: 37306321; PMCID: PMC10256273.
20. Hyland ME, Sodergren SC. Development of a new type of global quality of life scale, and comparison of performance and preference for 12 global scales. *Qual Life Res* 1996;5(5):469-80.
21. Kılınç DD, Mansız D. Examination of the reliability and readability of Chatbot Generative Pretrained Transformer's (ChatGPT) responses to questions about orthodontics and the evolution of these responses in an updated version. *Am J Orthod Dentofacial Orthop* 2024; 165(5):546-55.
22. Kurt Demirsoy K, Buyuk SK, Bicer T. How reliable is the artificial intelligence product large language model ChatGPT in orthodontics? *Angle Orthod* 2024;94(6):602-7.
23. Abu Arqub S, Al-Moghrabi D, Allareddy V, Upadhyay M, Vaid N, Yadav S. Content analysis of AI-generated (ChatGPT) responses concerning orthodontic clear aligners. *Angle Orthod* 2024;94(3):263-72.
24. Duran GS, Yurdakurban E, Topsakal KG. The quality of CLP-related Information for patients provided by ChatGPT. *Cleft Palate Craniofac J* 2025;62(4):588-95.
25. Dursun D, Bilici Geçer R. Can artificial intelligence models serve as patient information consultants in orthodontics? *BMC Med Inform Decis Mak* 2024;24(1):211.
26. Pan A, Musheyev D, Bockelman D, Loeb S, Kabariti AE. Assessment of Artificial Intelligence Chatbot Responses to Top Searched Queries About Cancer. *JAMA Oncol*. 2023 Oct 1;9(10):1437-1440. doi: 10.1001/jamaoncol.2023.2947. PMID: 37615960; PMCID: PMC10450581.

27. Senbaykal Yigit E, Taskirdi I, Haci IA, Tuncel T. Artificial intelligence performance in pediatric asthma. *J Asthma*. 2025 Aug 1:1-7. doi: 10.1080/02770903.2025.2531500. Epub ahead of print. PMID: 40643318.

28. Athaluri SA, Manthena SV, Kesapragada VSRKM, Yarlagadda V, Dave T, Duddumpudi RTS. Exploring the boundaries of reality: investigating the phenomenon of artificial intelligence hallucination in scientific writing through ChatGPT references. *Cureus* 2023;15(4):e37432.

29. Graf EM, McKinney JA, Dye AB, Lin L, Sanchez-Ramos L. Exploring the limits of artificial intelligence for referencing scientific articles. *Am J Perinatol* 2024;41(15):2072-81.

30. Alkuraya IF. Is artificial intelligence getting too much credit in medical genetics? *Am J Med Genet C Semin Med Genet* 2023;193(3):e32062.

31. Yurdakurban E, Topsakal KG, Duran GS. A comparative analysis of AI-based chatbots: Assessing data quality in orthognathic surgery related patient information. *J Stomatol Oral Maxillofac Surg* 2024;125(5):101757.

32. Google DeepMind. (2024). Gemini 1.5: Unlocking multimodal understanding across millions of tokens of context(Technical Report). Google DeepMind. Retrieved from <https://www.reportpdf.com/>.

33. Lewis, P., Yih, W., Ghazvininejad, M., Mohr, S., & Goyal, A. (2020). Retrieval-Augmented Generation for Knowledge-Intensive NLP Tasks. *Advances in Neural Information Processing Systems*, 33, 9459-9474.

34. Anthropic. (2024). The Claude 3 Model Family: Opus, Sonnet, Haiku - Model Card. Anthropic.URL: [https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model\\_Card\\_Claude\\_3.pdf](https://www-cdn.anthropic.com/de8ba9b01c9ab7cbabf5c33b80b7bbc618857627/Model_Card_Claude_3.pdf)

35. Anthropic. (2024). Multilingual Support - Claude Documentation. URL: <https://docs.claude.com/en/docs/build-with-claude/multilingual-support>

## บทวิทยาการ

มุ่งมั่งและการปรับตัวของบุคลากรที่เกี่ยวข้องกับระบบทันตสาธารณสุข ในโรงพยาบาลส่งเสริมสุขภาพตำบลที่ถ่ายโอนไปองค์กรปกครองส่วนท้องถิ่นจังหวัดตาก

# Perspectives and Adaptation of Personnel Involved in the Oral Health System in Subdistrict Health Promoting Hospitals Transferred to Local Administrative Organizations in Tak Province

## ปิติ จิตรุ่งเรืองนิจ<sup>1,2</sup> และ อติศักดิ์ จึงพัฒนาวดี<sup>3</sup>

Piti Jitrungruangnij<sup>1,2</sup> and Atisak Chuengpattanawadee<sup>3</sup>

<sup>1</sup>กลุ่มงานทันตสาธารณสุข สำนักงานสาธารณสุขจังหวัดตาก จังหวัดตาก ประเทศไทย

<sup>1</sup>Dental Public Health Department, Tak Provincial Public Health Office, Tak, Thailand

<sup>2</sup>หลักสูตรฝึกอบรมทันตแพทย์ประจำบ้านเพื่อวุฒิบัตรแสดงความรู้ความชำนาญในการประกอบวิชาชีพทันตกรรม สาขาทันตสาธารณสุข คณะทันตแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ จังหวัดเชียงใหม่ ประเทศไทย

<sup>2</sup>Residency Training Program in Dental Public Health, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand

<sup>3</sup>สาขานัตสาหรัณสุข คณะนัตแพทยศาสตร์ มหาวิทยาลัยเชียงใหม่ จังหวัดเชียงใหม่ ประเทศไทย

<sup>3</sup>Division of Dental Public Health, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand

## บทคัดย่อ

การถ่ายโอนโรงพยาบาลส่งเสริมสุขภาพตำบล (รพ.สต.) ไปยังองค์กรปกครองส่วนท้องถิ่น (อปท.) เป็นส่วนหนึ่งของแผนการกระจายอำนาจให้ท้องถิ่น จังหวัดตากได้มีการถ่ายโอนโรงพยาบาลส่งเสริมสุขภาพตำบลไปสังกัดเทศบาลและองค์กรบริหารส่วนตำบล (อปท.) ทั้งสิ้น 5 แห่ง โดยงานทันตสาธารณสุขเป็นหนึ่งในภารกิจที่ถูกถ่ายโอนไปพร้อมกัน การถ่ายโอน รพ.สต. เป็นการเปลี่ยนสังกัดการบังคับบัญชา ส่งผลให้ลักษณะการทำงานของบุคลากรเปลี่ยนไป และบุคลากรต้องปรับตัวเพื่อให้เข้ากับวัฒนธรรมองค์กรใหม่ การศึกษานี้มีวัตถุประสงค์เพื่อ ศึกษาความมองและการปรับตัวของบุคลากรที่เกี่ยวข้องกับระบบทันตสาธารณสุขในโรงพยาบาลส่งเสริมสุขภาพตำบลที่ถ่ายโอนไปเทศบาลและ อปท. จังหวัดตาก การศึกษานี้เป็นการวิจัยเชิงคุณภาพเก็บข้อมูลโดยใช้การสัมภาษณ์ผู้เกี่ยวข้องทั้งหมด 26 คน ประกอบด้วย ผู้บริหาร อปท. ผู้บริหารและหัวหน้ากลุ่มงานทันตกรรมของโรงพยาบาลระดับอำเภอในพื้นที่ที่มีการถ่ายโอน ที่อยู่ ในตำแหน่งช่วงการถ่ายโอนและปัจจุบัน รวมถึงผู้มีบทบาทในงานสาธารณสุขที่ถูกกล่าวถึง ของ รพ.สต. ที่ถ่ายโอนไป จากนั้นนำมารวเคราะห์ ที่ เชิงเนื้อหาและสร้างข้อสรุปแบบอุปนัย ผลการศึกษาพบประเด็นสำคัญ 3 ประเด็นได้แก่ 1. แรงเสียดทานในการถ่ายโอนส่วนหนึ่งมาจากการ พร้อมที่นิยามต่างกันของผู้บริหารกระทรวงสาธารณสุขและฝ่ายท้องถิ่น 2. การปรับตัวและต่อรองของบุคลากรสาธารณสุขกับประชาชนและ ผู้บริหารท้องถิ่นโดยยึดระเบียบรากการและมาตรฐานทางวิชาชีพที่เกี่ยวข้อง และประโยชน์ต่อประชาชนเป็นขอบเขตการต่อรอง 3. ตัวตน ของงานทันตสาธารณสุข ที่มาจากการที่งานทันตสาธารณสุขได้รับการสนับสนุนจากท้องถิ่นเพิ่มขึ้น หันตากิบາได้ทำงานของตนเพิ่มขึ้น แต่การกำกับดูแลทันตากิบາยังไม่ชัดเจนนัก สรุปผลการศึกษา การถ่ายโอน รพ.สต. ไปยัง อปท. ท่ามกลางแรงเสียดทานแสดงให้เห็นถึง ความเต็ดเดี่ยมสูงมั่นของทั้งท้องถิ่นรวมถึง รพ.สต. ที่ถ่ายโอน การอ้างถึงความพร้อมและไม่พร้อมของการถ่ายโอน สะท้อนให้เห็นมุ่งมอง ต่อความพร้อมและแนวคิดการทำงานที่ต่างกันของฝ่ายท้องถิ่นและสาธารณสุข การที่บุคลากรต้องอธิบายและต่อรองมากขึ้นเกิดจากความ สมพันธ์เชิงอำนาจที่เปลี่ยนไปภายหลังถ่ายโอน และความไม่สมดุลของข้อมูลระหว่างประชาชนกับวิชาชีพ โดยบุคลากรที่ทำงานภายใต้สังกัด ท้องถิ่นควรแม่นยำเรียบราชการที่เกี่ยวข้อง รู้ข้อบกเทศวิชาชีพของตน มีทักษะการเจรจาต่อรอง และการสนับสนุนงานทันตสาธารณสุข ของท้องถิ่นช่วยให้หันตากิบາกลมตัวตน แต่ความไม่พร้อมกลไกกำกับดูแลที่เป็นมาตรฐานมากขึ้น

**คำสำคัญ:** การกระจายอำนาจ, การปรับตัว, ระบบสุขภาพช่องปาก, โรงพยาบาลส่งเสริมสุขภาพตำบล (รพ.สต.), องค์กรปกครองส่วนท้องถิ่น

## Abstract

The transfer of Subdistrict Health Promoting Hospitals (SHPHs) to Local Administrative Organizations (LAOs) in Tak Province is part of Thailand's decentralization strategy. In this process, five SHPHs, including their oral health services, moved under the jurisdiction of local municipalities and Subdistrict Administrative Organizations. This change brought a shift in command structure and required personnel to adapt to new organizational cultures and methods. To understand these changes, researchers conducted qualitative interviews with 26 stakeholders, including LAO executives, SHPH leaders, dental therapists, and district hospital dental heads. Through content analysis, three central themes emerged. Firstly, resistance surfaced during the transfer due to differing interpretations of readiness between national public health authorities and local bodies. Secondly, personnel were compelled to adapt and negotiate in their roles, carefully balancing official regulations, professional standards, and the welfare of local residents. These negotiations reflected a shift in power dynamics and information asymmetry between professionals and the community after the transfer. Lastly, the identity of oral health services evolved as local support increased, giving dental therapists to engage more in their profession, though oversight mechanisms remained somewhat unclear. In summary, while the transfer process faced friction, it highlighted the determination of both local authorities and SHPHs to succeed in the new arrangement. The differing notions of readiness underscored fundamental contrasts between public health and local administrative perspectives. For long-term success, personnel must be fluent in regulations, know their professional boundaries, and build strong negotiation skills. Importantly, as local organizations bolster their support for oral health services, clear and consistent oversight frameworks are needed to ensure quality and accountability in the system.

**Keywords:** Decentralization, Adaptation, Oral Health System, Subdistrict Health Promoting Hospitals (SHPHs), Local Administrative Organizations (LAOs)

Received date: Aug 13, 2025

Revised date: Nov 7, 2025

Accepted date: Nov 13, 2025

Doi: 10.14456/jdat.2026.6

### ติดต่อเกี่ยวกับแนวทาง:

ອີກສິງເກົງ ສິງພັດບາງອີ ສວຂາວັນສາຮວາຮາສາ ດັບປະຈຸບັນພະຍາຍາສັກ ນະກາວິທະຍາລັບເຊື້ອງໃຈໜ້າ ແລະ ເຊື້ອງໃຈ້າ ພ. 50200 ກະເທດເປົ້າທະ ໂທຣ. 095-0941599

วิเมล: atisak.ch@cmu.ac.th

#### Correspondence to:

Atisak Chuengpattanawadee, Division of Dental Public Health, Faculty of Dentistry, Chiang Mai University, Chiang Mai 50200, Thailand.

Tel: 095-0941599, Email: atisak.ch@cmu.ac.th

ບໍ່ທຳນຳ

การถ่ายโอนโรงพยาบาลส่งเสริมสุขภาพตำบล (รพ.สต.) เป็นส่วนหนึ่งของการกระจายอำนาจให้ท้องถิ่นจัดการตนเอง โดยอยู่บนฐานนิติคิดที่ว่าหากอำนาจจากการจัดการบริการสาธารณสุขต่าง ๆ อยู่ใกล้ประชาชนมากเท่าไร ผู้นำมานำจากการเลือกตั้งของประชาชนในพื้นที่เอง ท้องถิ่นมีความคล่องตัวในการดำเนินงาน ลดขั้นตอนทางราชการที่ซับซ้อน ส่งเสริมวัตถุกรรมและการมีส่วนร่วมของชุมชนได้มากขึ้น ประชาชนเกี่ยมกับการรับการตอบสนองความต้องการดีขึ้น<sup>1-3</sup>

ประเทศไทยเริ่มมีแนวคิดเรื่องการกระจายอำนาจให้องค์กรปกครองส่วนท้องถิ่นอย่างชัดเจนตั้งแต่รัชสมัย พ.ศ.2540 นำมาสู่การตราพระราชกำหนดแผนและขั้นตอนการกระจายอำนาจให้องค์กรปกครองส่วนท้องถิ่น

แก่องค์กรปกครองส่วนท้องถิ่น (อปท.) พ.ศ. 2542 และแผนปฏิบัติการฯ ในระยะต่อมา โดยในแผนฯ ฉบับที่ 2 พ.ศ.2551 ได้กำหนดให้สถานีอนามัยและบุคลากรพร้อมภารกิจถ่ายโอนให้อปท.ที่มีความพร้อมดำเนินการ ปัจจุบัน จังหวัดตากได้มีการถ่ายโอน รพ.สต.และสถานีอนามัยไปยังองค์การบริหารส่วนตำบล (อบต.) และเทศบาลจำนวน 5 แห่ง และถ่ายโอนไปยังองค์การบริหารส่วนจังหวัด (อบจ.) 18 แห่ง จาก รพ.สต. ทั้งหมด 122 แห่ง งานทันตสาธารณสุขเป็นหนึ่งในการภารกิจของ รพ.สต. ที่ถูกถ่ายโอนไปยังท้องถิ่น มีการศึกษาพบร่วมกันว่าบริการที่ถ่ายโอนมีบุคลากรสนับสนุนเพิ่มขึ้น ทำให้ทันตบุคลากรสามารถปฏิบัติงานตามวิชาชีพได้มากขึ้น งบประมาณ

และการสนับสนุนครุภัณฑ์เพิ่มขึ้น มีความคิดถึงตัวในการดำเนินงานเพิ่มขึ้น และมีการให้บริการเพิ่มขึ้น<sup>4-6</sup>

ในขณะที่ รพ.สต.ถ่ายโอนเพิ่มขึ้นเรื่อย ๆ ก็มีความพ่ายแพ้ยับยั้งการถ่ายโอนจากฝั่งผู้บริหารกระทรวงสาธารณสุขด้วยเหตุผลท้องถิ่นขาดศักยภาพด้านการเงิน การจัดการ และความมั่นคงในราชการ ความกังวลของฝั่งสาธารณสุขที่ไม่มั่นใจในศักยภาพท้องถิ่นที่อาจไม่ได้มีองค์ความรู้ด้านสาธารณสุข<sup>7</sup> ทัศนคติการ “ทรยศ” ต่อระบบสาธารณสุข<sup>8</sup> รวมถึงความกังวลเรื่องความพร้อมของห้องถ่ายเงินเอง<sup>9</sup> บุคลากรส่วนหนึ่งมองว่าการถ่ายโอนไปยังสังกัดห้องถิ่นช่วยเพิ่มความก้าวหน้าในสายอาชีพ สามารถเลื่อนตำแหน่งได้มากขึ้น แต่ก็มีความกังวลเรื่องการทำงานร่วมกับฝั่งการเมือง<sup>10</sup> การศึกษานี้จึงมีวัตถุประสงค์เพื่อศึกษา牟มมองและการปรับตัวของบุคลากรที่เกี่ยวข้องกับระบบหันตสาธารณสุขในโรงพยาบาลส่งเสริมสุขภาพตำบลที่ถ่ายโอนไปเทศบาลและ อบต. จังหวัดตาก เพื่อเป็นแนวทางสำหรับบุคลากรที่ถ่ายโอนหรือวางแผนจะถ่ายโอนไปยังห้องถิ่นได้เข้าใจสถานการณ์และสิ่งที่จะต้องเตรียมตัวก่อนการถ่ายโอนไปยังห้องถิ่น

ตารางที่ 1 จำนวนผู้ได้รับการสัมภาษณ์จำแนกตามวิชาชีพและหน่วยบริการ

Table 1 Number of interviewees classified by profession and service unit

| รพ.สต./บุคลากร | พันธารภิบาล | หัวหน้าสถานีอนามัย/<br>ผู้อำนวยการ รพ.สต. | พันดแพทย์<br>หัวหน้ากลุ่มงาน | นายก อบต./<br>เทศบาล | อื่นๆ                                               |
|----------------|-------------|-------------------------------------------|------------------------------|----------------------|-----------------------------------------------------|
| สถานีอนามัย ก  | -           | 2                                         | 2                            | 2                    | รองนายก อบต. 1                                      |
| รพ.สต. ข       | 1           | 1                                         | 1*                           | 1                    | รักษาการ พอ.กองสาธารณสุข<br>และสิ่งแวดล้อม เทศบาล 1 |
| รพ.สต. ค       | 2           | 1                                         | 1                            | 2                    | -                                                   |
| รพ.สต. ง       | 1           | 2                                         | 1*                           | 2                    | พอ.กองสาธารณสุข เทศบาล 1                            |
| รพ.สต. จ       | -           | 2                                         |                              |                      |                                                     |

\* เป็นบคคลเดียวที่กัน

ชุดคำตามสัมภาษณ์ตัดแปลงจากชุดคำตามของรัชเฉลิม และคณะ<sup>11</sup> ผู้วิจัยได้ติดต่อเพื่อนัดหมายกลุ่มตัวอย่าง และเดินทางไปสัมภาษณ์ตัวอย่างในสถานที่ที่กลุ่มตัวอย่างสะดวก (ยกเว้นกลุ่มตัวอย่างที่ปัจจุบันไม่ได้อยู่ใน จ.ตาก ใช้การสัมภาษณ์แบบวิดีโอกล้องออนไลน์) ผู้วิจัยได้แนะนำตัว ชี้แจงวัตถุประสงค์ ขออนุญาตบันทึกเสียงและจดบันทึก โดยผู้วิจัยยินดีให้กลุ่มตัวอย่างให้สัมภาษณ์พร้อมกับผู้อื่นได้หากต้องการ ในระหว่างการสัมภาษณ์ ผู้วิจัยได้ใช้ชุดคำตามที่เตรียมมาในการถามนำก่อน สร้างบรรยากาศการพูดคุยให้เป็นธรรมชาติ และเมื่อมีประเด็นอะไรที่น่าสนใจจึงถามต่อจากประเด็นนั้น (probe) ในการสัมภาษณ์แต่ละครั้งใช้เวลา 1-2 ชั่วโมง โดยประมาณ การสัมภาษณ์กลุ่มตัวอย่างทั้ง 26 คนพบว่าข้อมูลมีความอิ่มตัวคือข้อมูลที่ได้รับเริ่มซ้ำกันและไม่มีข้อมูลใหม่มากนักหลังการสัมภาษณ์เสร็จ บทสัมภาษณ์ถูกก่อความและผู้วิจัยได้อ่านบทสัมภาษณ์ประกอบกับข้อมูลที่จดบันทึกได้ แล้วนำมาริเคราะห์

## วิธีดำเนินการศึกษา

การศึกษานี้ใช้ระเบียบวิจัยเชิงคุณภาพ เก็บข้อมูลโดยการสัมภาษณ์แบบกึ่งโครงสร้าง (semi-structured interview) ซึ่งเป็นการสัมภาษณ์ที่มีการเตรียมคำถามหลักไว้ก่อนแต่มีการถามเพิ่มเติมต่อจากประเด็นน่าสนใจที่ค้นพบ สัมภาษณ์ผู้เกี่ยวข้องกับระบบสุขภาพซึ่งปากทั้งหมด 26 คน ประกอบด้วย นายกเทศมนตรี หรือ อบต. ผู้อำนวยการและทันตแพทย์ของสถานีอนามัยและรพ.สต. ที่ถ่ายโอนไปเทศบาลและ อบต. ในจังหวัดตาก และหัวหน้ากลุ่มงานทันตกรรมของโรงพยาบาลระดับอำเภอในพื้นที่ รวมถึงผู้มีบทบาทในงานสาธารณสุขที่ถูกกล่าวถึงของ รพ.สต. ที่ถ่ายโอนไปดังตารางที่ 1 โดยมีเกณฑ์การคัดเข้า ได้แก่ เป็นบุคลากรที่ปฏิบัติงานหรือเกี่ยวข้องกับรพ.สต. ที่ถ่ายโอนไป อบต. และเทศบาลใน จ.ตาก ทั้ง 5 แห่ง และเป็นผู้ปฏิบัติงานในตำแหน่งซึ่งที่มีการถ่ายโอน รพ.สต. หรือผู้ที่ยังดำรงตำแหน่ง ณ ช่วงเวลาการเก็บข้อมูล เกณฑ์การคัดออก ได้แก่ เป็นผู้ปฏิบัติงานในตำแหน่งดังกล่าวนานอย่างกว่า 6 เดือน ติดต่อไม่ได้หรือเสียชีวิต

ข้อมูลโดยใช้วิธีการวิเคราะห์เนื้อหาแก่นของเรื่อง (thematic content analysis) โดยอ่านทวนบันทึกที่จดมาได้ประกอบกับบทสัมภาษณ์ จัดกลุ่มคำที่มีความหมายใกล้เคียงกันได้ด้วยกัน หาความสัมพันธ์ หาแก่น (theme) ที่ปรากฏในการสัมภาษณ์ สรุปประเด็นสำคัญ โดยการวิเคราะห์แบบอุปนัย (analytic induction) และนำมารวบประยุ ร่วมกับผู้วิจัยร่วมซึ่งเป็นอาจารย์ที่ปรึกษาเพื่อหาข้อสรุปสุดท้าย เก็บข้อมูลในช่วงเดือนกุมภาพันธ์ 2566 – กุมภาพันธ์ 2567 การวิจัย นี้มีการตรวจสอบความน่าเชื่อถือแบบสามเหลี่ยม (triangulation) โดย การตรวจสอบข้อมูลในประเด็นเดียวกันกับผู้ให้ข้อมูลต่างกันกลุ่มกัน และมีการจัดประชุมเพื่อคืนข้อมูลที่ได้กับกลุ่มตัวอย่างบางส่วน หลังเก็บข้อมูลเสร็จเรียบร้อย การศึกษานี้ได้รับการรับรองโครงการ ศึกษาวิจัยในมนุษย์ โดยคณะกรรมการพิทักษ์สิทธิ์สวัสดิภาพและ ป้องกันภัยนตรายของผู้ถูกวิจัย คณะทันตแพทยศาสตร์ มหาวิทยาลัย เชียงใหม่ เอกสารเลขที่ 16/2566

## ผลการศึกษา

การศึกษานี้เป็นการศึกษามุ่งมองของผู้เกี่ยวข้องกับระบบ  
ทันตสาธารณสุขในสถานีอนามัยและ รพ.สต.ที่ถ่ายโอนไปเทศบาล  
และ อบต.ในจังหวัดตากซึ่งอยู่ในตำแหน่งชั่วคราวถ่ายโอนฯ และ  
อยู่ในตำแหน่ง ณ ปัจจุบัน รวมถึงผู้เป็นทบทวนอีก ๑ ที่ถูกกล่าวถึง<sup>1</sup>  
จำนวน 26 คน ได้แก่ ทันตแพทย์ในสถานีอนามัยและ รพ.สต. 4 คน

หัวหน้าสถานีอนามัยและผู้อำนวยการ รพ.สต. 8 คน หันตแพทย์ หัวหน้าก่อรุ่มงานทันตกรรม โรงพยาบาลแม่ป่าย 4 คน นายกเทศมนตรี และ นายก อบต. 7 คน และผู้บริหารที่ดูแลงานสาธารณสุขในสังกัดเทศบาลและ อบต. 3 คน

ตารางที่ 2 สรุปประเด็นหลักและประเด็นย่อยที่พบจากการศึกษา

**Table 2** Summary of the main themes and subthemes identified in the study

| ประเด็นหลัก                 | ประเด็นย่อย                                                                                                                                                              |
|-----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1. แรงเสียดทานในการถ่ายโอน  | แรงด้านต่อการถ่ายโอนกล้ายเป็นแรงผลักให้ รพ.สต.ต้องให้บริการได้ดีขึ้น<br>ความแตกต่างของนิยาม “ความพร้อม” ระหว่างผู้สาธารณสุขและห้องถีน                                    |
| 2. การปรับตัวและต่อรอง      | บุคลากรสาธารณสุขต้องอธิบายและเจรจาต่อรองมากขึ้น<br>ระเบียบรากการและหลักการทางวิชาการเป็นหลักพิจิในการต่อรอง<br>จุดร่วมของผู้สาธารณสุขและผู้การเมืองคือประโยชน์ของประชาชน |
| 3. ตัวตนของงานทันตสาธารณสุข | “ตัวตน” ของทันตวิบาลที่ขึ้นจากการสนับสนุนของท้องถิ่น<br>ใช้รูปแบบไม่เป็นทางการในการกำกับดูแลทันตวิบาล                                                                    |

ผู้ให้ข้อมูลมีมุ่งมองต่อการทำงานสาธารณะสุขและทันตสาธารณสุข โดยสามารถแบ่งออกเป็น ประเด็นหลัก 3 ประเด็น และประเด็นย่อย 7 ประเด็น ดังตารางที่ 2 ได้แก่ 1. แรงเสียดทานในการถ่ายโอน 2. การปรับตัวและต่อรอง 3. ตัวตนของงานทันตสาธารณสุข โดยขยายความได้ดังนี้

## 1. แรงเสียดทานในการถ่ายโอน

ผอ.รพ.สต.และ นายก อปต. บางแห่งกล่าวถึงความพยายามของผู้บริหารฝ่ายกระทรวงสาธารณสุขทั้งระดับประเทศหรือระดับจังหวัดที่ไม่ต้องการให้มีการถ่ายโอน รพ.สต.ไปท้องถิ่น โดยมีเหตุผล เช่น เรื่องความพร้อม ค่าตอบแทนที่จะได้ต่างจากเดิม หรือการไม่ให้โอนกลับหากมีปัญหาเกิดขึ้น

“ເຄີບອກວ່າ ຄ້າຄ່າຍົນໄປ ມີອະໄຣເກີດໜີ້ ອີ່ກັບລັບມານະ  
ໄມ້ຮັບກັບໄວ້ໂທ ເຮົາລັກວ່າເມື່ອກ່ອນເຮັກໜ້ວຍເລື່ອກະທຽບຮ່ວມສາງຄຸນລຸ່ມ  
ມາກີ່ປີ ແທນທີ່ຈະມາໃຫ້ກຳລັງໃຈທີ່ອບອກວ່າຄ້າໄປບໍ່ຢູ່ແລ້ວມີມົດລຸ່ມ  
ໃຫ້ໂອນຍ້າກລັບມາໄດ້ ແຕ່ມາບອກວ່າຄ້າເກີດໄປແລ້ວໄປຕ້ອງກັບມາ  
ຄຳນີ້ແລະຕ່ອີ່ໃຫ້ເຈືອວ່າໄຮ່ເກີດໄປແລ້ວໄປຕ້ອງກັບມາ  
(ຜ.ຣ.ສ.ຕ. ສັງກັດ ອປຕ.)

“เค้า (กระทรวงสาธารณสุข) บอกว่าลูกสาวเค้า ถ้าจะไปอยู่กับใครต้องเลี้ยงดูให้ดี ทำนองห่วงลูกสาวไม่อยากให้ถ่ายโอน ผ่านกีบกับใครต้องไม่รู้สึกว่าลูกสาวท่านนี้ไปอยู่กับผู้ดีทั้งนาน ถ้าหากว่าท่านพูดมาหนึ่งท่านยังไม่รู้สึกว่าลูกสาวท่านนี้ไปอยู่กับผู้ดีทั้งนาน ถ้าห้องได้ดีห้องไปแล้ว” (นายก อนุฯ.)

ในทางกลับกัน แรงด้านของการถ่ายโอนกลับทำให้  
ผอ.รพ.สต.บางแห่งยังตั้งใจทำงานมุ่งมั่นให้ดีกว่าเดิมเพื่อไม่ให้เป็น  
ข้อครหาเปรียบเทียบกับ รพ.สต.แห่งอื่น ๆ

“ยังคิดอยู่นั่นว่าถ้าเราออกไปอยู่ท้องถิ่น เราทำได้ไม่ติด กว่าเดิม เรายังรักวิ่งมันจะอาย” (ผอ.รพ.สต. ลังกัดเทศบาล)

นอกจากนั้นยังพบรการให้ความหมายของ “ความพร้อม” ผู้ท้องถิ่นที่แตกต่างไปจากผู้สาธารณสุข โดยก่อนมีการรับถ่ายโอน ที่มีการประเมินความพร้อมของ อบต. และเทศบาลตามเกณฑ์อยู่แล้ว และนากๆ ทุกคนก็ยืนยันถึงความพร้อมของตนหรือท้องถิ่นเอง ในการดูแลงานสาธารณสุข ความพร้อมนี้อาจจะไม่ใช่ความพร้อม ในความรู้ด้านสาธารณสุข แต่เป็นความพร้อมในเชิงการตัดสินใจที่ เด็ขาดชัดเจน วิสัยทัศน์และการมองในเชิงระบบที่กว้างกว่าแค่ ประเด็นสาธารณสุข ประสบการณ์การทำงานที่ผ่านมา งบประมาณ และการรู้จักเครือข่ายบุคลากรสาธารณสุข

“เค้าว่านายกไม่ได้จับถึงระดับปริญญาไม่มีความรู้ ผม  
บอกว่าไม่ได้เกี่ยวกัน คุณไม่ได้อาบปริญญามาทำงาน คุณอาคน  
เอามันสมอง เอาประสบการณ์มาทำงาน... ผมก็อ้าคัย หนึ่ง ความกล้า  
ลอง การตัดสินใจ สาม ประสบการณ์ที่ผ่านๆ มา มากนักกัน คนที่รู้จัก  
ในสารานรรถาภิเษกมีเยอะแยะ” (นายก อบต.)

“เรามองพวกระบบทั้งแต่การอยู่ การกิน ถนนหนทาง มองทุกภาคล้วน เราไม่ได้มีมาเฉพาะเจ้าของ แล้วพูดตรงๆ นักการเมือง สมัยนี้มีความรู้ และมองกว้างครับ มันไม่เหมือนเมื่อก่อน วิสัยทัศน์ enko ใหญ่กว่าอย่างมาก” (นายกเทศมนตรี)

## 2. การรับรู้ตัวและต่อรอง

ด้วยความที่บุคลากรสาธารณสุขต้องทำงานร่วมและอยู่ด้วยการบังคับบัญชาของฝ่ายประชาชนหรือการเมืองทำให้ต้องมี

ทักษะหรือวิธีการบางอย่างเพื่อให้การทำงานราบรื่นไปได้บุคลากรสาธารณสุขหลายคนบอกว่า “จำเป็นต้องอธิบายงานตัวเองเพิ่มขึ้น กับนายกฯ หรือเจ้าหน้าที่ใน อบต./เทศบาล เพราะผู้บังคับบัญชา และเพื่อนร่วมงานในห้องถีนไม่ได้มีความรู้ทางสาธารณสุขมากนัก บางส่วนก็สามารถอธิบายได้ดี แต่บางส่วนก็รู้สึกไม่สบายใจที่คุยกับนายกฯ นำไปสู่ความรู้สึกไม่เป็นพากเดียวกัน”

“อยู่สาธารณสุขก็อเจ้าหน้าที่ค่อนข้างความรู้เช่นกัน ที่เด็กเลือกมาบางคนก็ไม่ได้มีความรู้เท่าไหร่ แต่อย่างของพวกราเนี่ย มีแต่คนที่เค้ามีการศึกษาหน่อยเค้าก็จะโถกเค้าว่าในเรื่องคุยงาน” (ผอ.รพ.สต.สังกัด อบต.)

อีกส่วนหนึ่งคือการที่อำนาจบังคับบัญชาอยู่ใกล้คุณทำงาน ก็ถูกจับตามองมากขึ้น มีงานที่ “ถูกสั่งให้ทำ” มากขึ้นที่อาจจะไม่เป็นใจ เสี่ยงต่อการผิดระเบียบหรือความเป็นวิชาชีพ เช่น เรื่องการเงิน หรือนโยบายบางอย่าง บุคลากรสาธารณสุขโดยเฉพาะกับคนที่ต้องประสานกับนายกฯ หรือพื้นที่ที่มีการเมืองมีการแข่งขันสูง ต้องแม่นยำระเบียบราชการต่าง ๆ รู้ขอบเขตในวิชาชีพตัวเองและรู้บทบาทตัวเองอย่างชัดเจน ใช้ระเบียบรากการและความรู้ทางวิชาชีพเป็นหลังพิงเพื่อจะอธิบายและต่อรองเมื่อเจอกับขอหรือสั่งให้ทำงานอย่างที่ไม่สอดคล้องกับหลักเกณฑ์ ต้องใช้ทักษะการประนีประนอมหรือการยืดหยุ่นต่าง ๆ โดยการเจรจาต่อรองพบทั้งระหว่างผู้บริหาร สาธารณสุขของห้องถีนกับนายกฯ และเจ้าหน้าที่สาธารณสุขกับประชาชนในพื้นที่ ซึ่งเป็นผลจากการที่นายกฯ สามารถตอบสนองกับประชาชนได้รวดเร็ว กว่า หากประชาชนไม่พอใจ ไปร้องเรียนถึงนายกฯ ก็จะมีผลกระทบกับบุคลากรได้เร็ว กว่า ทำให้บุคลากรสาธารณสุขต้องปรับการทำงาน ไม่สามารถปฏิเสธนายกฯ หรือประชาชนตรง ๆ เมื่อเจอสิ่งที่ไม่ตรงตามวิชาการหรือระเบียบ แต่ต้องมีวิธีการเจรจาต่อรอง ผู้ให้สัมภาษณ์หลายคนกล่าวถึงประเด็นนี้ว่า บุคลากรสาธารณสุขควรเข้าใจบทบาทและขอบเขตของงานของตัวเองให้ดี สามารถอธิบายรายละเอียดและต่อรองเมื่อจำเป็นได้โดยยึดหลักความเป็นกลาง มองที่ประโยชน์ของประชาชนเป็นหลัก ไม่ยึดติดกับศักดิ์ศรีของตน ไม่เข้าข้างฝ่ายใด

“ถ้าคุณทำงานมีเป้าที่ชัดเจนว่าเราจะทำอะไรให้กับชุมชน ให้กับประชาชน นักการเมืองไม่น่ามาลังอะไรได้มาก เราต้องชัดเจนว่าเราจะทำอะไร เค้าไม่น่าจะมาลัง ได้ว่าไม่ต้องทำหน้าที่อื่นแล้ว ต้องชัดว่าเราจะมีหน้าที่รับผิดชอบในด้านนี้ยังไง ทำอะไรบ้าง ถ้าเรามองให้มันเป็นเรื่องบวก ถ่ายโอนมาแล้วมีบริการที่ดีขึ้น สามารถดึงทันตแพทย์มาให้บริการ สามารถทำให้คักกี้ภารพดีขึ้นกว่าเดิม มันจะเป็นผลลัพธ์กับนักการเมืองด้วยซ้ำ” (หัวหน้ากกลุ่มงานทันตกรรม)

“เราต้องออกเสียงด้วย เพาะะบางที่นายกฯ ก็คิดแบบนักธุรกิจ พึ่งบวกก่ออย่างนี้ต้องเบียบครับ เป็นอย่างนี้ได้อย่างนี้ได้ เรายกต้องเอาใจเค้าด้วยนะ ไม่ใช่ว่าไม่ได้ ๆ ตลอดก็จะโดนแกพัน นะ มีไปผ่าศูนย์เด็กเล็กไป เรายกต้องมีขั้นเชิง ถึงเป้าจะเหมือนกันแต่จะอ้อมหน่อย เราต้องอธิบายให้เค้า เพราะเค้าไม่ได้เป็นสายการแพทย์” (ผอ.รพ.สต.สังกัดเทศบาล)

“เข้า(นายกฯ)มองภาพไปไกลกว่าเราอีก เข้าบอก ‘หมอดิดช้าเกินไป’ ผມบอก ‘ค่อย ๆ เป็นค่อย ๆ ไปครับท่านนายก แต่ต้องมีภาระน้ำใจความเป็นไปได้ก่อน’ เราต้องพูดอย่างนี้นึง ไม่ Berger เค้าไม่เข้าเดี่ยวก็โคนแบกขึ้น แต่เราต้องให้เหตุผลเค้า เราเก่งกว่าเค้า นี่เรื่องสาธารณสุข แต่เค้าเก่งบริหาร เรายกต้องพูดเรื่องสาธารณสุขให้ยอดหน่อย ให้เขายอมเรา” (ผอ.รพ.สต.สังกัดเทศบาล)

“เราต้องเป็นกลาง ไม่ไปอยู่ฝ่ายใดฝ่ายหนึ่ง ถ้าคิดถึงประโยชน์ล้วนใหญ่ของประชาชนเป็นที่ตั้ง เราจะไม่เครียด ต่อให้เราสมมุตินิว่าเราจะต้องทะเล พี่จะขอถอย พี่จะไม่ไปเมื่อนักบุญหักไม่ยอมงอ” (ผอ.รพ.สต.สังกัด อบต.)

ความเปลี่ยนแปลงของการทำงานร่วมกันระหว่างบุคลากร สาธารณสุขกับฝ่ายการเมืองจะต้องให้เห็นถึงความสัมพันธ์เชิงอำนาจที่เปลี่ยนไปจากการถ่ายโอน กล่าวคือ เดิมบุคลากรสาธารณสุขมักอยู่ในจุดที่มีอำนาจจากกว่าประชาชน เพราะความรู้ทางวิชาชีพ สามารถใช้อำนาจเพื่อสั่งการรักษาหรือแนะนำวิธีการดูแลตัวเองได้ ค่อนข้างเต็มที่ แต่เมื่อถ่ายโอน อำนาจถูกแบ่งไปยังนายกฯ ผู้บังคับบัญชาซึ่งมีความใกล้ชิดเชิงพื้นที่และเป็นผู้รับอำนาจผ่านการเลือกตั้งจากประชาชนอีกที่หนึ่งเป็นวงจร การปรับความสัมพันธ์เชิงอำนาจนี้ย่อมทำให้บุคลากรสาธารณสุขถูกกระทบ สูญเสียอำนาจหรือความสามารถบางอย่างใน การรักษา การแนะนำ หรือการสอนคนให้เพียงฝ่ายเดียวแต่จำเป็นต้องรับฟัง ต่อรองและปรับตัวเพื่อให้การทำงานสาธารณสุขเดินหน้าต่อไปได้ภายใต้บริบทของเทศบาลและ อบต.

งานทันตสาธารณสุขเองยังไม่พบความชัดเจ้งที่ต้องมีการเจรจาต่อรองมากนัก มีเพียงการต่อรองระหว่างทันตแพทย์ แต่หนึ่งกับผู้อำนวยการ กับผู้อำนวยการกองสาธารณสุขที่ต้องการให้มีการตรวจฟันเจ้าหน้าที่ ย้อมสีฟัน และฝึกประยุกต์

“จะให้เอามีดสีย้อมฟัน ย้อมแล้วก็ประยุกต์เจ้าหน้าที่ด้วยแต่เค้าไม่ได้คิดว่าเจ้าหน้าที่เป็นผู้หลักผู้ใหญ่กันแล้ว ใจจะมาเคี้ยว เขามีเจ้าใจแต่รู้ว่าก็จะให้ทำ พึ่งไปคุยกับหมอ (หัวหน้ากกลุ่มงานทันตกรรม รพ.แม่บ่าย) ว่าหูอ้างหมอด้วยเหมือนมันไม่ใช้กับกลุ่มนี้แล้วกว่าเขากะยอมได้ก็คือแบบซักแม้น้ำทั้งท้า มันก็หนีอย่างแรงนี้” (หัวหน้ากกลุ่มงานทันตแพทย์ สังกัดเทศบาล)

จากคำกล่าวของทันตแพทย์ แสดงให้เห็นถึงความคิด ริเริ่มหรือนโยบายพิเศษที่มาจากการผู้บริหารของเทศบาลที่สะท้อนความเป็นอิสระของเทศบาลที่สามารถกำหนดนโยบายที่ต่างจากผู้อำนวยการ แต่ในขณะเดียวกันงานทันตสาธารณสุขก็ยังคงได้รับอิทธิพลจากหัวหน้ากกลุ่มงานทันตกรรมมีร่องรอยมาแม่ข่าย ด้วยเช่นกัน ซึ่งเป็นผู้กำหนดด้านวิชาการ และยังทำให้เห็นบทบาทการต่อรองของทันตแพทย์ที่เป็นคนกลางระหว่างสองฝ่าย

### 3. ตัวตนของงานทันตสาธารณสุข

งานทันตสาธารณสุขเป็นงานที่ห้องถินค่อนข้างให้ความสำคัญสังเกตจากการลงทุนเรื่องครุภัณฑ์ทันตกรรม เช่น ยูนิตทำฟันใหม่ และรถทันตกรรม อีกทั้งการมีบุคลากรสนับสนุนใน รพ.สต.เพิ่มขึ้น ทำให้ทันตากิบัลสังกัดเทศบาลสามารถทำงานทันตสาธารณสุขได้มากขึ้น ไม่จำเป็นต้องทำงานอื่น ๆ ที่ไม่เกี่ยวข้องกับวิชาชีพ ซึ่งทำให้ทันตากิบัลรู้สึกมี “ตัวตน” มากขึ้น

“(ห้องถิน) ทำให้เรามีศักยภาพในการทำงานมากขึ้น เราสามารถมีตัวตนในการทำงานมากขึ้น อยู่สาธารณสุขเขาไม่ค่อยเห็นความสำคัญงานทันตกรรม เห็นว่างานเราวิธีหลักได้ แต่ว่างานอื่นต้องช่วยก่อน แต่ที่นี่คือเรามากถูกที่ องค์กรเห็นความสำคัญของงานทันตกรรม จะให้ทำงานของตัวเองเป็นหลักแล้วทำให้ออกมาดีอย่างนี้ ถ้าอยู่ที่เดิมการทำที่นี่ไม่ใช่เรื่องสำคัญสำหรับผู้บริหาร ก็จะให้ไปทำงานอย่างอื่นก่อน” (ทันตากิบัลสังกัดเทศบาล)

การกำกับดูแลทันตากิบัลโดยทันตแพทย์ตามกฎหมาย<sup>12-15</sup> โรงพยาบาลแม่ข่ายมีการทำการคำสั่งให้ทันตแพทย์จากโรงพยาบาล กำกับดูแลทันตากิบัลใน รพ.สต. แต่ในทางปฏิบัติ การกำกับเป็นไปในลักษณะความสัมพันธ์และแบบไม่เป็นทางการ คือ ไม่ได้มีทันตแพทย์คุมประจำตลอดในการทำหัตถการ ไม่ได้มีแนวทางเวชปฏิบัติทางทันตกรรม (clinical practice guidelines: CPG) ขัดเจน แต่ใช้การรับปรึกษาเวลามีปัญหา การให้ทันตากิบัลจบใหม่ได้มาฝึกงานที่โรงพยาบาลก่อน 1-2 สัปดาห์เพื่อเรียนรู้การทำงานจากรุ่นพี่ทันตากิบัล การออกแบบเป็นครั้งคราว การประชุมรวมทันตากิบัล ทุกสังกัดในอำเภอประจำไดรมาส การส่งผู้ช่วยจาก รพ.สต.มาอบรมที่ รพ. รวมถึงการตรวจสอบผลงานเทียบกับปริมาณวัสดุที่เบิกจากโรงพยาบาลแม่ข่าย ปัญหาที่พบคือ ผอ.รพ.สต.สังกัดเทศบาลแห่งหนึ่ง เริ่มถูกดึงแนวทางการรักษาของโรงพยาบาลแม่ข่ายสำหรับทันตากิบัล ที่เพิ่งย้ายเข้ามาซึ่งปัจจุบันยังไม่มีการทำขึ้น

“ตอนนี้ทันตากิบัลไปตามเรื่อง CPG ว่าทำอะไรได้บ้าง เขายังบอกว่าไม่มี แล้วไม่มี แล้วยังไง น้องเคยอุย.... (ชื่อจังหวัด)... ที่นั่นเขามีเป็นเลย ทำอะไรได้บ้าง และก็ทำได้เยอะกว่าเรา บ้านเราตอนนี้แทบจะทำอะไรไม่ได้อยู่แล้ว เหลือแค่ ขาดกับอุด ถอนแต่ซึ่บมั่ง” (ผอ.รพ.สต.สังกัดเทศบาล)

### อภิปรายผลการศึกษา

การศึกษานี้พบว่าบุคลากรที่เกี่ยวข้องกับระบบทันตสาธารณสุขในสถานีอนามัยและ รพ.สต.ที่ถ่ายโอนไป อบต. และเทศบาลมีมุ่งมองและการปรับตัวแบ่งออกเป็น 3 ประเด็นใหญ่ ๆ ได้แก่ 1. การมีแรงเสียดทานที่เกิดขึ้นในช่วงเวลาของการถ่ายโอน ซึ่งส่วนหนึ่งมาจากการนิยามของความพร้อมที่ต่างกันของสองฝ่าย 2. การปรับตัวและต่อรองที่บุคลากรสาธารณสุขในสังกัดท้องถินจำเป็นต้องทำมากขึ้นเพื่อให้สามารถทำงานร่วมกับฝ่ายการเมืองได้ในขณะที่ยัง

รักษาหลักการในระเบียบรากการและมาตรฐานวิชาชีพไว้ 3. ตัวตนของงานทันตสาธารณสุข ที่สหห้องทันตากิบัล ทันตบุคลากรที่มีบทบาทสำคัญในงานปฐมภูมิ ซึ่งรู้สึกมีตัวตนผ่านการได้ทำงานในวิชาชีพของตน

ความหมายของความพร้อมที่ไม่ตรงกันของห้องถินและสาธารณสุขอาจสหห้องแนวคิดเบื้องหลังการทำงานของฝ่ายวิชาชีพ สาธารณสุขและฝ่ายห้องถินเอง โดยฝ่ายวิชาชีพสาธารณสุขมองว่า ความรู้ ความชำนาญ การวางแผนตามหลักวิชาการเป็นความพร้อมสำคัญที่ความมีก่อนเริ่มต้นปฏิบัติงาน<sup>7</sup> ส่วนฝ่ายห้องถินหรือการเมืองมองความพร้อมเป็นความสามารถในการตัดสินใจและประสบการณ์ที่สามารถเรียนรู้จากการลองผิดลองถูกและแก้ปัญหาไปเรื่อย ๆ หากมองอีกมุมหนึ่ง การถ่ายโอน รพ.สต. ก็ทำให้กระทรวงสาธารณสุข สูญเสียอำนาจในการจัดการคน เงิน ของเข่นกัน ไม่สามารถส่งการบุคลากรให้ทำงานได้ตามที่หน่วยงานระดับบุตต้องการ ซึ่งอาจเกิดปัญหาการให้บริการประชาชนได้ในมุมของผู้บริหารสาธารณสุข เมื่อในระดับจังหวัดและประเทศ พบรความพยายามยับยั้งการถ่ายโอน รพ.สต. แต่จากการศึกษานี้ในระดับพื้นที่ หลังการถ่ายโอน โรงพยาบาล กับ รพ.สต. ก็ยังมีความสัมพันธ์ที่ดีและสนับสนุนการบริการคนให้ได้อย่างราบรื่น

ลักษณะการทำงานของบุคลากรสาธารณสุขเปลี่ยนไปโดยบุคลากรบางส่วนรู้สึกว่าจำเป็นต้องอธิบายหรือต่อรองมากขึ้น เป็นผลจากอำนาจที่เปลี่ยนมือทำให้ความต้องการหรือเสียงของประชาชนได้รับการตอบสนองมากขึ้น ในขณะเดียวกัน การบริการด้านสุขภาพก็ถูกกำหนดไว้ด้วยมาตรฐานวิชาชีพ ซึ่งอาจไม่ตรงกับความต้องการของประชาชนทั้งหมด เพราะบริการสุขภาพหลายคลังเป็นสิ่งที่ประชาชนมีข้อมูลไม่เพียงพอหรือขับข้อน ซึ่งเป็นความไม่สมดุลของข้อมูล (information asymmetry) ระหว่างประชาชนกับบุคลากรสาธารณสุข หรือบริบทแวดล้อมของประชาชนผู้รับบริการ อาจที่ไม่เหมาะสมกับแนวทางเวชปฏิบัติบางอย่าง เช่นเดียวกับระเบียบต่าง ๆ ที่กำหนดโดยส่วนกลางซึ่งห้องถินจำเป็นต้องปฏิบัติตาม ระเบียบและขอบเขตวิชาชีพจึงกลایเป็นหลังพิงให้กับบุคลากรสาธารณสุขในการเจรจา อธิบายและต่อรอง ในขณะเดียวกัน การต่อรองก็จำเป็นต้องทำอย่างนุ่มนวลเพื่อไม่ให้เกิดผลเสียต่อตนเอง โดยมองถึงประโยชน์ของประชาชนในพื้นที่ซึ่งเป็นจุดร่วมกันทั้งของบุคลากรสาธารณสุขและฝ่ายการเมือง การมีขอบเขตมาตรฐานกำกับที่ชัดเจนจากส่วนกลางหรือส่วนภูมิภาคอาจเป็นตัวกลางที่ช่วยให้ทั้งสองฝ่ายสามารถบรรลุความต้องการร่วมกันได้ สอดคล้องกับผลการศึกษาของชั้นเฉลิมและคณะ<sup>11</sup> ที่พบว่าการถ่ายโอนจำเป็นต้องมาพร้อมกับการเพิ่มศักยภาพกระทรวงสาธารณสุขให้สามารถแบ่งขอบเขตหน้าที่หน่วยปฐมภูมิ ทุติยภูมิ และตติยภูมิอย่างชัดเจน และมีการกำกับดูแลมาตรฐานและคุณภาพการบริการ โดยปัจจุบัน พบว่ามีกลไกควบคุมมาตรฐาน รพ.สต.ที่ถ่ายโอน ได้แก่ บันทึกข้อตกลง

(MOU) ระหว่างฝ่ายสาธารณสุขกับองค์กรปกครองส่วนท้องถิ่น และ มาตรฐานคุณภาพบริการสุขภาพปฐมภูมิตาม พรบ.ระบบสุขภาพ ปฐมภูมิ พ.ศ.2562 สำหรับ รพ.สต.ที่ขึ้นทะเบียนหน่วยบริการปฐมภูมิหรือเครือข่ายหน่วยบริการปฐมภูมิ (PCU/NPCU)

งานทันตสาธารณสุขใน รพ.สต.ที่ถ่ายโอนส่วนใหญ่ ได้รับการสนับสนุนเพิ่มขึ้นทั้งด้านครุภัณฑ์และบุคลากร ซึ่งทำให้ ทันตแพทย์สามารถให้บริการได้เต็มที่มากขึ้น ส่งผลต่อกำลังใจของ ทันตแพทย์เอง สอดคล้องกับการศึกษางานทันตสาธารณสุขใน รพ.สต.ที่ถ่ายโอนไปทั้งสิ้นของกุลภาร พูลภูษ์ และวิลักษณ์<sup>4-6</sup> งานทันตกรรมที่ได้รับการสนับสนุนจากท้องถิ่นเพิ่มขึ้นจากมาจากการ เป็นงานที่ประชาชนต้องการและสามารถสร้างรายได้ให้กับ รพ.สต. เป็นการมอบบริการปฐมภูมิที่ต่างไปจากฝ่ายท้องที่ สำหรับ การกำกับดูแลทันตแพทย์ที่ใช้ความสัมพันธ์หรือรูปแบบที่ไม่เป็น ทางการทำให้ทันตแพทย์สึกปลดภัย เป็นมิตร มีอิสระในการทำงาน และไม่รู้สึกอึดอัด แต่ในอนาคต เมื่อมีทันตแพทย์ที่ถ่ายโอนไปมากขึ้น หรือมีการย้ายเข้ามาในพื้นที่มากขึ้น ก็อาจมีปัญหาในการกำกับ ดูแลลักษณะนี้มากขึ้น เนื่องจากทันตแพทย์ในโรงพยาบาลไม่ได้ อยู่ภายใต้สังกัดเดียวกัน การมีกลไกในการกำกับดูแลตามกฎหมาย ที่เป็นทางการและเป็นระบบควบคู่กับการกำกับแบบเดิมจะช่วย ให้การดูแลทันตแพทย์ข้ามสังกัดขัดเจนและเป็นมาตรฐานมากขึ้น ช่วยคุ้มครองการทำหัตถการของทันตแพทย์ตามกฎหมาย และยัง ช่วยสื่อสารให้ผู้บังคับบัญชาของทันตแพทย์ผู้ถ่ายโอนหรือภาค ประชาชนได้เข้าใจขอบเขตและบทบาทการทำงานของทันตแพทย์ด้วย จากการบททวนการศึกษาที่ผ่านมา พบรูปแบบกลไกการกำกับดูแล ทันตแพทย์ในสังกัดองค์กรปกครองส่วนท้องถิ่น (อปท.) ต่าง ๆ ได้แก่ การมีบันทึกความเข้าใจ (MOU) ระหว่างกระทรวงสาธารณสุข และองค์กรปกครองส่วนท้องถิ่น<sup>16,17</sup> คำสั่งแต่งตั้งให้ทันตแพทย์ กระทรวงสาธารณสุขเป็นผู้ควบคุมดูแลทันตแพทย์สังกัด อปท.<sup>18</sup> เช่นเดียวกับที่พับใน การศึกษานี้ การจัดทำแนวทางการปฏิบัติ งานทันตสาธารณสุขของทันตแพทย์และ การควบคุมดูแลของ ทันตแพทย์<sup>17</sup> การสนับสนุนทันตแพทย์จากโรงพยาบาลร่วมให้ บริการใน รพ.สต.<sup>5,6,17</sup> การสนับสนุนทางด้านวิชาการทั้งจากการ ที่ทันตแพทย์ได้เรียนรู้จากทันตแพทย์ที่มาร่วมให้บริการ และจาก การประชุมอบรม ติดตามการดำเนินงาน<sup>6</sup> ในระดับขององค์การ บริหารส่วนจังหวัด (อปจ.) ซึ่งเป็น อปท. ขนาดใหญ่ มีการตั้งคณะ อนุกรรมการสุขภาพช่องปากของจังหวัดซึ่งมีตัวแทนทั้งฝ่ายสาธารณสุข และท้องถิ่น อปจ. บางแห่ง เช่น อปจ.นครราชสีมา อปจ.ภูเก็ต<sup>19</sup> และ อปจ.นนทบุรี<sup>1</sup> ยังได้มีการจ้างทันตแพทย์มาประจำ ซึ่งนอกจากมา ช่วยกำกับดูแลทันตแพทย์ ยังมาร่วมให้บริการอีกด้วย แต่ รพ.สต. ที่ถ่ายโอนไปบางแห่งก็มีกลไกการกำกับดูแลโดยทันตแพทย์ที่อยู่ ต่างสังกัดไม่ขัดเจนเท่ากับ รพ.สต.ที่ไม่ได้ถ่ายโอน เช่น MOU ที่ ไม่มีรายละเอียดและไม่มีรายชื่อทันตแพทย์ผู้ดูแล<sup>16</sup> กลไกการ

กำกับดูแลที่เป็นไปได้อีน ๆ เช่น แนวทางการส่งต่อผู้ป่วยที่เกิน ศักยภาพของ รพ.สต. และแผนการเยี่ยมติดตาม รพ.สต. ฯลฯ การที่ ผอ.รพ.สต. สอบຄามถึงแนวทางเวชปฏิบัติทางทันตกรรม อาจสะท้อนความต้องการทราบขอบเขตที่ชัดเจนของทันตแพทย์ ซึ่งมีอยู่แล้วบ้าง<sup>13-15</sup> เพียงแต่ไม่ถูกสื่อสารไปอย่างทั่วถึง แนวทาง และขอบเขตการทำงานที่ชัดเจนจะช่วยให้ผู้บริหารไม่สั่งการให้ ทันตแพทย์ทำเกินกว่าที่กฎหมายกำหนด ช่วยในการวางแผนจัด บริการและประเมินความคุ้มค่าหากต้องการขยายศักยภาพการ บริการ เช่น หาก รพ.สต. ต้องการให้บริการทันตกรรมที่ซับซ้อนกว่า ที่ทันตแพทย์ทำได้ ก็จะเป็นต้องจัดหาทันตแพทย์มาเพิ่ม ซึ่งต้องใช้ งบประมาณของ รพ.สต. หรือห้องถิ่นจังหวัดเพิ่มตำแหน่งเพิ่มเติม เช่นเดียวกับกลไกการกำกับดูแลที่ชัดเจนนี้ เช่น ทันตแพทย์ที่กำกับดูแล มีแผนออกเยี่ยมการให้บริการของทันตแพทย์ หรือจัดประชุม ทันตบุคลากรร่วมกันในอำเภอเป็นประจำ ช่วยให้การบริการมี มาตรฐาน สอดคล้องกับการศึกษาของวัลลุชีวะ<sup>20</sup> ที่พบว่าทันตแพทย์ มักถูกสั่งให้ทำงานเกินขอบเขตที่ได้เรียนมา และทันตแพทย์ส่วนใหญ่ เห็นว่าความมีขอบเขตในการทำงานที่ชัดเจนเพื่อเป็นหลักประกัน และคุ้มครองการทำงานอย่างไร้ตาม การกำกับดูแลแบบไม่เป็น ทางการตามความสัมพันธ์ ความยึดหยุ่น และมิตรภาพยังคงมี ความสำคัญอยู่ และความมีควบคุมดูแลเพื่อสร้างบรรยักษ์ที่ดีและ เป็นมิตรในการทำงานร่วมกัน ในระยะยาว ที่มีทันตแพทย์สังกัด องค์กรปกครองส่วนท้องถิ่นมากขึ้นเรื่อย ๆ ความมีการทบทวนกฎหมาย ที่เกี่ยวข้องกับการทำงานของทันตแพทย์ เพื่อให้ทันตแพทย์ สามารถทำงานได้อย่างอิสระมากขึ้นนั้นความรับผิดชอบของตน โดย คำนึงถึงทั้งผลประโยชน์และความปลอดภัยของประชาชน ภายใต้ ขอบเขตของวิชาชีพ เช่น การมีใบอนุญาตประกอบวิชาชีพ หรือการ ทำงานโดยไม่จำเป็นต้องมีการกำกับดูแลโดยทันตแพทย์เพื่อดูแล อยู่บนขอบเขตที่กฎหมายกำหนดไว้ เช่นเดียวกับหลาย ๆ ประเทศ ที่เริ่มให้อิสระกับทันตแพทย์โดยเปลี่ยนแนวทางจากการกำกับดูแล (supervision) เป็นการทำงานร่วมกัน (collaborative) มากขึ้น<sup>21,22</sup>

การศึกษานี้ เป็นการศึกษาวิจัยเชิงคุณภาพโดยผู้ให้ บริการใน รพ.สต. ที่ส่วนใหญ่เป็นบุคลากรในสังกัด อปต. และเทศบาล และ เป็นข้อมูลของหน่วยบริการที่ถ่ายโอนไปเพลพะจังหวัดตากเท่านั้น ดังนั้นข้อมูลที่ได้รับจึงอาจมีความโน้มเอียงไปยังผู้ที่ถ่ายโอนมากกว่า โดยพบข้อดีของการถ่ายโอน รพ.สต. ไปอยู่กับท้องถิ่นมาก และอาจ แตกต่างจาก รพ.สต. ที่ถ่ายโอนไปท้องถิ่นในจังหวัดอื่น ๆ รวมถึง แตกต่างจากการถ่ายโอนไปยังองค์กรบริหารส่วนจังหวัดด้วย ใน อนาคตควรมีการศึกษามุ่งมองเพิ่มเติมในฝ่ายประชาชนที่รับบริการ หรือมุ่งมองของบุคลากรผู้ที่กระทรวงสาธารณสุข เช่น ผู้อำนวยการ โรงพยาบาล สาธารณสุขอำเภอ ถึงบทบาทที่เปลี่ยนไปต่อ รพ.สต. ถ่ายโอน และความมีการศึกษาในจังหวัดอื่น ๆ เพิ่มขึ้น อีกทั้งยังมี ประเด็นบางอย่างที่น่าสนใจและควรศึกษาต่อไป เช่น ทัศนคติของ

ผู้บริหารฝ่ายท้องถิ่นดึงงานทันตสาธารณสุขที่ต้องการให้เกิดขึ้นในรพ.สต. เช่น ลักษณะการให้บริการที่ต้องการเน้น ความต้องการ และความเป็นไปได้ของ การขยายบริการไปถึงระดับทุติยภูมิและ ตติยภูมิ ซึ่งรวมไปถึงศักยภาพของท้องถิ่นในการจ้างหรือเปิดกรอบ ทันตแพทย์

การศึกษานี้มีข้อเสนอแนะ 4 ข้อต่อบุคลากรและหน่วยงานต่าง ๆ ดังนี้ 1. หน่วยงานกระทรวงสาธารณสุขในส่วนภูมิภาค ได้แก่ โรงพยาบาล สำนักงานสาธารณสุขอำเภอ สำนักงานสาธารณสุข จังหวัด และองค์กรปกครองส่วนท้องถิ่นที่รับถ่ายโอน รพ.สต. ควร ร่วมมือกันทำงานสาธารณสุขในพื้นที่อย่างให้เกียรติกัน ไม่มีอคติ ต่อกันบันจุดรุ่มคือประโยชน์ต่อประชาชน โดยอาจมีข้อตกลง แบ่งความรับผิดชอบและงบประมาณให้ชัดเจนมากขึ้น 2. บุคลากร สาธารณสุขที่ทำงานในองค์กรปกครองส่วนท้องถิ่นควรพัฒนาทักษะ การเจรจา ต่อรอง และมีความรู้ที่มีเนินยำเรื่องของขอบเขตวิชาชีพและ ระเบียบที่เกี่ยวข้องต่าง ๆ 3. ทันตแพทย์โรงพยาบาลแม่ข่ายควร มีกลไกการกำกับดูแลทันตภาคีใน รพ.สต. ที่ชัดเจนมากขึ้น เช่น การทบทวนคำสั่งมอบหมายทันตแพทย์ที่กำกับดูแล แผนการ เยี่ยมินเทศ การจัดประชุมทันตบุคลากรร่วมกันเป็นประจำ และ ประชาสัมพันธ์ขอบเขตการทำงานของทันตภาคีให้ผู้บริหารท้องถิ่น ทราบ 4. ในอนาคต ควรมีการปรับปรุงกฎหมายที่เกี่ยวข้องกับการ ปฏิบัติงานของทันตภาคี เช่น พรบ.วิชาชีพทันตกรรม และระเบียบ กระทรวงสาธารณสุข เพื่อให้ทันตภาคีสามารถทำงานอย่าง อิสระมากขึ้นภายใต้ขอบเขตความรับผิดชอบของตน

## สรุปผลการศึกษา

การถ่ายโอน รพ.สต. ไปยังองค์กรปกครองส่วนท้องถิ่น ท่ามกลางแรงเสียดทานจากฝ่ายกระทรวงสาธารณสุขยิ่งส่งเสริมให้เกิด ความเดือดเดี่ยมุ่งมั่นของท้องถิ่นและ รพ.สต. ที่ถ่ายโอน การอ้างถึง ความพร้อมและความไม่พร้อมของการถ่ายโอน สะท้อนให้เห็นมุ่งมอง ต่อความพร้อมและแนวคิดการทำงานที่ต่างกันของฝ่ายท้องถิ่นและ สาธารณสุข การที่บุคลากรต้องอธิบายและต่อรองมากขึ้นเกิดจาก ความสัมพันธ์เชิงอำนาจที่เปลี่ยนไปภายหลังถ่ายโอน และความไม่ สมดุลของข้อมูลระหว่างประชาชนกับวิชาชีพ โดยบุคลากรที่ทำงาน ภายใต้สังกัดท้องถิ่นควรแม่นยำระเบียบราชการที่เกี่ยวข้องและ ขอบเขตวิชาชีพของตน รวมถึงมีทักษะการเจรจาต่อรอง เพื่อให้ สามารถทำงานกับฝ่ายการเมืองได้อย่างราบรื่น และการสนับสนุน งานทันตสาธารณสุขของท้องถิ่นช่วยให้ทันตภาคีล้มเหลวต้น แต่ควร มากพร้อมกลไกการกำกับดูแลที่เป็นมาตรฐานมากขึ้น

## เอกสารอ้างอิง

- B.Saltman R, Bankauskaite V, Vrangbaek K. Decentralization in health care : strategies and outcomes. Maidenhead: Open University Press; 2007.
- Regmi K. Decentralizing health services : a global perspective: Springer Science & Business Media; 2013.
- Is Decentralization Good For Development?: Perspectives from Academics and Policy Makers. In: Faguet J-P, Pöschl C, editors. Is Decentralization Good For Development?: Perspectives from Academics and Policy Makers: Oxford University Press; 2015.
- Tamsampaoloet K. Oral Health Service System in Primary Care Units After Decentralization to Local Administrative Organizations in Nonthaburi Province. *JOHCP* 2025;5(1):136–55.
- Thivakorakot W. Satisfaction and Impact After Transferring Dental Public Health Missions to Banprok Sub-District Administrative Organization, Samut Songkhram Province. *Reg 4-5 Med J* 2022; 41(4):437–48.
- Soparat P. Oral health care system after decentralized the Sub-district health center to local authority: a case study of Sun-Nameng sub-district, Chiang Mai Province. *KKUJPHR* 2021;14(2):108–18.
- Limsuvat S, Suksamran S. Problems of Transferring District Health Promoting Hospitals from the Ministry of Public Health to Local Government Organizations in Nakhon Ratchasima Province. *WPSMS* 2022;5(5):35–50.
- The Coverage. The major obstacle in transferring the missions of subdistrict health promoting hospitals (SHPHs) is the prevailing attitude that changing affiliation equals betraying the public health system.: TheCoverage.info; 2023 [cited 2025 October 12]. Available from: <https://www.thecoverage.info/news/content/4867>.
- Sitthirungsan W. Transferring subdistrict health promoting hospitals (SHPHs) to local administrative organizations is a decentralization process intricately linked to the public health system, personnel, patient referrals, and medical care.: Hfocus.org 2022 [cited 2025 October 12]. Available from: <https://www.hfocus.org/content/2022/02/24444>.
- Hfocus. Broadening Perspectives: Pros and Cons of Transferring Subdistrict Health Promoting Hospitals to Local Administration — A Reflection on the Ministry of Public Health's Personnel Management" 2021 [cited 2025 October 12]. Available from: <https://www.hfocus.org/content/2021/10/23471>.
- Sudhipongpracha T, Choksettakij W, Phuripongthanawat P, Kittayaphon U, Satthatham N, Onphothong Y. Policy Analysis and Policy Design for the Transfer of Subdistrict Health Promotion Hospitals to Provincial Administrative Organizations (PAOs). Bangkok: The College of Interdisciplinary Studies, Thammasat University; 2021.
- Royal Thai Government. Dental Profession Act, B.E. 2537 (1994): Royal Gazette; 1994.
- Ministry of Public Health. Regulation of the Ministry of Public Health on Persons Assigned by Ministries, Departments, Bangkok Metropolitan Administration, Pattaya City, Provincial Administrative Organizations, Municipalities, Sanitation Organizations, Other Local Administrative Organizations, or the Thai Red Cross Society to Perform Dental Professional Practice under the Supervision of Licensed Dentists, B.E. 2539 (1996): Royal Gazette; 1996.

14. Ministry of Public Health. Regulation of the Ministry of Public Health on Persons Assigned by Ministries, Departments, Bangkok Metropolitan Administration, Pattaya City, Provincial Administrative Organizations, Municipalities, Sanitation Organizations, Other Local Administrative Organizations, or the Thai Red Cross Society to Perform Dental Professional Practice under the Supervision of Licensed Dentists (No.2), B.E. 2559 (2016): Royal Gazette; 2016.

15. Ministry of Public Health. Regulation of the Ministry of Public Health on Persons Assigned by Ministries, Departments, Bangkok Metropolitan Administration, Pattaya City, Provincial Administrative Organizations, Municipalities, Sanitation Organizations, Other Local Administrative Organizations, or the Thai Red Cross Society to Perform Dental Professional Practice under the Supervision of Licensed Dentists (No.3), B.E. 2559 (2016): Royal Gazette; 2016.

16. Fuengkhajorn A, Singweratham N, Siewchaisakul P, Wungrath J. Comparison of Access to Dental Services and Oral Health Status among Children Aged 0-12 years between Tumbon Health Promoting Hospital with and without Transferred to the Local Administrative Organization in the Northern Region of Thailand. *SCNJ* 2024; 11(2):e268398.

17. Premprayoon N, Supagat B-o, Mankong R, Losupakarn R, Bunkhong P. Evaluation of Oral Health Promotion Services in Primary Care After devolution of Duties to the Provincial Administrative Organization. *JHEALTH* 2025;48(3):11-27.

18. Jitjong A. Evaluation of an Oral Health Care System preparedness for transferring to the Provincial Administrative Organization in Rongkwang District, Phrae Province. *JHEALTH* 2025;48(2):68-85.

19. Taearak P, Krueathep W, Limsawart W, Sribhudwong P, Kanjanawatana S, Aosan P, *et al.* The Study and Development of Cooperative Mechanisms among Local Government Organizations for Local Health System Governance in the context of Transferring Sub-district Health Promotion Hospitals to Provincial Administrative Organizations. National Health Commission Office (NHCO); 2024.

20. Dharmasaroja K, Tuongratanaphan S. Expectation of Dentists Towards the Role of Dental Nurses in Thai Dental Public Health. *THJPH* 2021;51(2):121-9.

21. Agrasuta V. Role of dental therapist and dental hygienist in various countries. *Th Dent PH J* 2015;20(3):78-88.

22. Chena J, Meyerhoefer CD, Timmons EJ. The Effects of Dental Hygienist Autonomy on Dental Care Utilization. The Center for Growth and Opportunity at Utah State University; 2020.

## บทวิทยาการ

ปัจจัยที่สัมพันธ์กับระดับความชอบหวานของคนไทยมุสลิมเชื้อสายมลายู วัยก่อนสูงอายุในอำเภอสายบุรี จังหวัดปัตตานี

## Factors Associated with Sweet Preference among Pre-elderly Thai Melayu Muslims in Saiburi District, Pattani Province

นรีดา เพาะเดร<sup>1,2</sup>, อัจฉรา วัฒนาภา<sup>3</sup>, อังคณา เรียมนตรี<sup>3,4</sup>

Nureeda Pohde<sup>1,2</sup>, Achara Wattanapa<sup>3</sup>, Angkana Thearmontree<sup>3,4</sup>

<sup>1</sup>หลักสูตรฝึกอบรมทันตแพทย์ประจำบ้านเพื่อฉุกเฉินและการประคบรัตน์ สาขาทันตสาธารณสุข คณะทันตแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ จังหวัดสงขลา ประเทศไทย

<sup>1</sup>Residency Training Program in Dental Public Health, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand

<sup>2</sup>ฝ่ายทันตกรรม โรงพยาบาลสมเด็จพระยุพราชสายบุรี จังหวัดปัตตานี

<sup>2</sup>Dental Department, Crown Prince Saiburi Hospital, Pattani Province, Thailand

<sup>3</sup>สาขาวิชาทันตกรรมป้องกัน คณะทันตแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ จังหวัดสงขลา ประเทศไทย

<sup>3</sup>Department of Preventive Dentistry, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand

<sup>4</sup> หน่วยวิจัยเพื่อการพัฒนาการตัดและซ่อมภาพช่องปาก คณะทันตแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ จังหวัดสงขลา ประเทศไทย

<sup>4</sup>Improvement of Oral Health Care Research Unit, Faculty of Dentistry, Prince of Songkla University, Songkhla, Thailand

บทคัดย่อ

การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาระดับความชอบหวาน ปัจจัยทางสังคมและบริบททางวัฒนธรรมที่สัมพันธ์กับระดับความชอบหวานของคนไทยมุสลิมเชื้อสายมลายูวัยก่อนสูงอายุ (40-59 ปี) อาศัยอยู่ในอำเภอสายบุรี จังหวัดปัตตานี จำนวน 263 คน เก็บข้อมูลระดับความชอบหวานโดยวิธีเลือกแบบอิสระ (Free choice method) ด้วยสาระภาษาอังกฤษ 6 ความเข้มข้น เก็บข้อมูลปัจจัยส่วนบุคคลโดยการสัมภาษณ์ได้แก่ เพศ ระดับการศึกษา รายได้ อาชีพ ถิ่นที่อยู่ (ติด/ไม่ติดทะเล) ความเป็นเมือง (เมือง/ชนบท) ดัชนีมวลกาย (BMI) อายุ และการรับรู้ความชอบในรสหวาน ใช้การทดสอบค่าสแควร์ (Chi-square) อัตราส่วนออด (Odds ratio; OR) และการวิเคราะห์ถดถอยโลจิสติก (Logistic Regression) เพื่อหาความสัมพันธ์ระหว่างปัจจัยต่าง ๆ กับระดับความชอบหวาน การศึกษาเชิงคุณภาพ ดำเนินต่อเนื่องจากการศึกษาเชิงปริมาณ คัดเลือกกลุ่มตัวอย่างแบบเจาะจง แบ่งเป็นกลุ่มที่เลือกระดับความหวานสูงสุด และต่ำสุด ใช้การสัมภาษณ์แบบกึ่งโครงสร้าง สัมภาษณ์กลุ่มตัวอย่างเกี่ยวกับปัจจัยทางสังคมและบริบททางวัฒนธรรมที่มีผลต่อระดับความชอบหวาน ข้อมูลที่ได้ถูกวิเคราะห์ด้วยวิธีการวิเคราะห์เนื้อหา (content analysis) ผลการศึกษาในกลุ่มตัวอย่างที่ได้จำนวน 263 คน ส่วนใหญ่เป็นเพศหญิง มีเคราะห์ฐานะค่อนข้างต่ำ ร้อยละ 37.3 มีระดับความชอบหวานสูง ( $>10^{\circ}\text{Bx}$ ) หลังจากควบคุมตัวแปรอื่น ๆ พบร่วมกับอาชีพใช้แรงงานและการรับรู้ว่าต้นชอบหวานมีความสัมพันธ์อย่างมีนัยสำคัญกับระดับความชอบหวาน โดยผู้ใช้แรงงานมีโอกาสชอบหวานสูงกว่าผู้ไม่ใช้แรงงาน 2 เท่า (OR = 2.0, 95% CI: 1.1-3.5) และผู้ที่รับรู้ว่าชอบหวานมีโอกาสชอบหวานสูงกว่าผู้ไม่ชอบหรือเฉย ๆ 2.2 เท่า (OR = 2.2, 95% CI: 1.3-3.9) เก็บข้อมูลเชิงคุณภาพในผู้ที่มีระดับความชอบหวานสูงสุดและต่ำสุด กลุ่มละ 10 คน พบร่วมปัจจัยที่เกี่ยวข้องในผู้ชอบหวานสูงได้แก่ ความหวานทำให้สดชื่นและเติมพลังเมื่อทำงานหนัก ความหวานจากบริบทครอบครัว สังคมและสิ่งแวดล้อมที่อื้อต่อการกินหวาน ขณะที่ผู้ชอบหวานต่ำพบปัจจัยเรื่องความกังวลสุขภาพของตนเองหรือคนใกล้ตัวเกี่ยวกับโรคเบาหวานและอิทธิพลจากบริบทครอบครัวที่ทำให้ไม่ชอบหวาน ปัจจัยทางวัฒนธรรมมลายูได้แก่ การบริโภคในช่วงถือศีลอด การเลี้ยงรับรองแขกด้วยอาหารหวาน และการมอบน้ำตาลในงานบุญ ดังนั้นการลด

**คำสำคัญ:** น้ำตาล, มุสลิม, ระดับความชอบหวาน, วัฒนธรรมมลายู

## Abstract

This study aimed to examine the level of sweet preference and the influencing factors, including social and cultural conditions, among pre-elderly Thai-Malay Muslims. A mixed methods design was employed. In the quantitative phase, 263 participants aged 40–59 years residing in Saiburi District, Pattani, were assessed for sweet preference using the free-choice method with six sucrose concentrations. Interviews were conducted to collect data on sex, education, income, occupation, residence (coastal/inland), urbanicity (urban/rural), body mass index (BMI), age, and self-perceived sweet preference. Data were analyzed using Chi-square tests, odds ratios and logistic regression. The qualitative study was conducted followed the quantitative study by selecting participants from each extreme group (highest and lowest) for semi-structured interviews on social and cultural influences. Among the 263 participants, most were female with low socioeconomic status. High sweet preference ( $>10^{\circ}\text{Bx}$ ) was found in 37.3%. Logistic regression analysis showed that occupation and self-perceived sweet preference were significantly associated with the level of sweet preference. Labor-intensive workers were twice as likely to prefer higher sweetness level than non-labor workers (OR = 2.0, 95% CI: 1.1–3.5). Those perceiving themselves as sweet likers were 2.2 times more likely to prefer higher sweetness than those who were neutral or dislike (OR = 2.2, 95% CI: 1.3–3.9). In the qualitative phase, 10 participants from each group (highest and lowest sweet preference group) were included, content analysis revealed that participants with high sweet preference perceived sweetness as refreshing and energizing during heavy work, sweet perception reinforced by family and environmental contexts. In contrast those with low sweet preference often mentioned health concerns or family influences discouraging sugar use. Cultural practices including sweet food consumption during Ramadan, serving sweet dishes to guests, and offering sugar in religious ceremonies were identified as additional factors shaping sweet preference. In conclusion, strategies to reduce sugar consumption should integrate social and cultural contexts to ensure sustainable behavior change.

**Key words:** Sugar, Muslims, Sweet preference, Melayu culture

Received date: Aug 31, 2025

Revised date: Oct 25, 2025

Accepted date: Nov 16, 2025

Doi: 10.14456/jdat.2026.7

### ติดต่อเกี่ยวกับบทความ:

อังคณา เธียร์มอนตี้ คณะทันตแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ จำเนียหาดใหญ่ จังหวัดสงขลา 90110 ประเทศไทย โทรศัพท์: 086-9620253  
อีเมล: angkana.dent@gmail.com

### Correspondence to:

Angkana Thearmontree Improvement of Oral Health Care Research Unit, Faculty of Dentistry, Prince of Songkla University, Songkhla 90110, Thailand. Tel: 086-9620253 Email: angkana.dent@gmail.com

## บทนำ

ความหวานเป็นรสเดี่ยวที่อยู่กับความเป็นพื้นฐานและความอ่อนโยน แต่ละบุคคลมีความชอบหวานที่ต่างกัน ซึ่งได้รับอิทธิพลจากหลายปัจจัย เช่น เพศ<sup>1</sup> อายุ<sup>2</sup> ระดับการศึกษา<sup>3</sup> BMI<sup>4</sup> ความเป็นเมือง-ชนบท<sup>5</sup> ลักษณะทางภูมิศาสตร์ ได้แก่ พื้นที่ติดทะเล พื้นที่บนภูเขาสูง<sup>5,6</sup> วัฒนธรรม ชาติพันธุ์ และวิถีการดำเนินชีวิต<sup>3,7,8</sup> ประสบการณ์ในการกินหวาน<sup>9</sup> เป็นต้น มีการศึกษาพบว่า การบริโภคน้ำตาลในระดับสูง เป็นประจำ สมพนธ์กับระดับการรับรู้รสหวาน (Sweet taste threshold)

ผู้ที่มีระดับการรับรู้รสหวานสูง ต้องบริโภคน้ำตาลมากจึงจะรับรู้รสหวานทำให้ต้องบริโภคน้ำตาลมากขึ้น เพื่อให้ได้รสหวานที่ต้องการ<sup>9</sup> การบริโภคน้ำตาลในปริมาณที่สูง สมพนธ์กับปัญหาสุขภาพหลายประการ เช่น ฟันผุ โรคเบาหวาน ภาวะอ้วน และโรคไม่ติดต่อเรื้อรังอื่น ๆ เป็นต้น<sup>10</sup> องค์กรอนามัยโลกแนะนำให้จำกัดการบริโภคน้ำตาลอิสระไม่เกินร้อยละ 10 ของพลังงานที่ได้รับต่อวัน หรือ 12 ช้อนชา (สำหรับผู้ต้องการพลังงาน 2,000 กิโลแคลอรี่)

(Kcal)) และควรลดเหลือไม่เกินร้อยละ 5 หรือ 6 ข้อนชา เพื่อลดความเสี่ยงต่อการเกิดปัญหาสุขภาพ รวมถึงโรคฟันผุ<sup>11</sup> ซึ่งข้อมูลการบริโภคน้ำตาลของคนไทยพบว่า ในปี พ.ศ. 2560 บริโภคน้ำตาลเฉลี่ย 27 ข้อนชาต่อวัน และปี พ.ศ. 2564 ลดลงเหลือเฉลี่ย 23 ข้อนชาต่อวัน แต่ยังสูงกว่าเกณฑ์ที่องค์กรอนามัยโลกกำหนดไว้ไม่เกิน 6 ข้อนชาต่อวัน ถึง 4 เท่า<sup>12</sup>

ในชุมชนชาวไทยมุสลิมเชื้อสายมลายู ความหวานเป็นหนึ่งในสชาติหลักของอาหารท้องถิ่น อาหารหวานหลายชนิดใช้น้ำตาลเป็นส่วนประกอบสำคัญ ระหว่างน้ำของอาหารมีความสำคัญในวัฒนธรรมลัทธิในเดือนرمฎกันซึ่งเป็นเทศกาลศีลอด หวานลายูนิยมนิยมรับประทานอาหารและเครื่องดื่มระหว่างหลังการละศีลอด มีการศึกษา พบว่า ชาไวน์มุสลิมที่ถือศีลอด มีการรับประทานอาหารอาหารหวานและเครื่องดื่มระหว่างน้ำที่มีน้ำตาล ด้วยเหตุผลว่า รู้สึกสดชื่นและมีเรี่ยวแรงมากกว่าอาหารชนิดอื่น<sup>13</sup> มีการสนับสนุนให้หลีกศีลอดด้วยอินพ拉้ม ซึ่งเป็นผลไม้ที่มีรสหวาน นอกจากจะได้พลังงานจากน้ำตาลแล้ว ยังได้กลบบุญเนื่องด้วยการปฏิบัติตามแบบอย่างของท่านศาสดามุ罕หมัด

กลุ่มวัยก่อนสูงอายุ (40–59 ปี) เป็นวัยที่ร่างกายเริ่มมีการเปลี่ยนแปลงทางสรีรวิทยาเข้าสูงวัยสูงอายุ โดยส่วนใหญ่มักมีพฤติกรรมการบริโภคคงที่ ที่สำคัญกลุ่มวัยนี้มักมีอิทธิพลต่อการบริโภคของคนในครอบครัว การลดระดับความชอบหวานและปรับพฤติกรรมการบริโภคน้ำตาลในช่วงวัยนี้ไม่เพียงช่วยลดความเสี่ยงต่อโรค แต่ยังสามารถส่งเสริมพฤติกรรมสุขภาพที่ดีแก่สมาชิกในครอบครัวอย่างไร้กังวล ข้อมูลเกี่ยวกับระดับความชอบหวานและปัจจัยที่เกี่ยวข้อง กับระดับความชอบหวานในกลุ่มก่อนวัยผู้สูงอายุ โดยเฉพาะในบริบทของชุมชนมลายูยังมีจำกัด การศึกษานี้มีวัตถุประสงค์เพื่อศึกษาระดับความชอบหวานและปัจจัยที่สัมพันธ์กับระดับความชอบหวานในกลุ่มก่อนวัยผู้สูงอายุ อำเภอสายบุรี จังหวัดปัตตานี เพื่อเป็นข้อมูลพื้นฐานสำหรับการวางแผนรณรงค์และลดการบริโภคน้ำตาลให้เหมาะสมกับบริบทชุมชนต่อไป

## วิธีดำเนินการวิจัย

### รูปแบบการศึกษา:

เป็นการวิจัยแบบผสมผสาน (Mixed Methods Designs) โดยใช้รูปแบบ Explanatory Sequential design เริ่มจากการศึกษาเชิงปริมาณแบบวิเคราะห์ตัดขวาง (cross-sectional analytical study) ตามด้วยการศึกษาเชิงคุณภาพโดยใช้การสัมภาษณ์แบบกึ่งโครงสร้างเพื่ออธิบายผลการวิจัยเชิงปริมาณ ให้เข้าใจได้ลึกซึ้งยิ่งขึ้น

### การศึกษาเชิงปริมาณ

ประชากรที่ศึกษาและขนาดกลุ่มตัวอย่าง กลุ่มตัวอย่าง เป็นคนไทยมุสลิมเชื้อสายมลายู วัยก่อนผู้สูงอายุ 40–59 ปี ในอำเภอสายบุรี จังหวัดปัตตานี ขนาดกลุ่มตัวอย่างคำนวณโดยใช้

สูตรวิเคราะห์คัดถอยโลจิสติก<sup>14</sup> กำหนดค่า  $\beta$  เป็นสัดส่วนของผู้ที่เลือกรับดับความหวานสูงสุด  $= 0.364^{15}$  มีตัวแปรจำนวน 9 ตัวต้องใช้กลุ่มตัวอย่างอย่างน้อย 248 คน พื้นที่ศึกษาแบ่งเป็น 11 ตำบล จัดขึ้นตัวอย่างตามความเป็นเมือง/ชนบท และพื้นที่ติดทะเล/ไม่ติดทะเล จากนั้นสุ่มตัวอย่างแบบ Stratified Random Sampling ตามสัดส่วนประชากรในแต่ละตำบล โดยใช้สมุดรายชื่อสมาชิกลูกบ้านของอาสาสมัครสาธารณสุขประจำบ้าน (อสม.) เป็นกรอบรายชื่อ (Sampling frame) เกณฑ์คัดเข้า ได้แก่ นับถือศาสนาอิสลาม อายุ 40–59 ปี อาศัยในจังหวัดปัตตานี  $\geq 1$  ปี และใช้ภาษามลายูในชีวิตประจำวัน เกณฑ์คัดออก ได้แก่ ผู้ที่มีโรคทางระบบหรือใช้ยาต่อเนื่องซึ่งอาจมีผลต่อการรับรส (เช่น โรคเบาหวาน เป็นต้น)

### ขั้นตอนการศึกษา

ตัวแปรตามคือ ระดับความชอบหวาน ใช้วิธี free choice method ปรับจากการศึกษาของ Steiner และคณะ 1984<sup>16</sup> แบ่งกลุ่มที่มีระดับความชอบหวาน ต่ำและสูง ใช้จุดตัดที่ 0.3 โมลาร์ หรือ  $10^{\circ}\text{Bx}$  ( $\text{ต่ำ} \leq 10^{\circ}\text{Bx}$  และ  $\text{สูง} > 10^{\circ}\text{Bx}$ ) ตัวแปรปัจจัย ได้แก่ เพศ ระดับการศึกษา รายได้ อาชีพ อายุ ถึงที่อยู่ (ติด/ไม่ติดทะเล) ความเป็นเมือง (เมือง/ชนบท) BMI อายุ และการรับรู้ความชอบหวานของตน (ประเมินโดยใช้คำว่า “โดยปกติท่านคิดว่าตนเองชอบหวานมากน้อยเพียงใด” ให้เลือกค่าตอบ 3 ระดับ ได้แก่ (1) ไม่ชอบ/ชอบน้อย, (2) เฉย ๆ, และ (3) ชอบหวาน) เก็บข้อมูลทั่วไปด้วยแบบสัมภาษณ์ซึ่งได้ประเมินความสอดคล้องโดยผู้ทรงคุณวุฒิ 3 ท่าน (Index of consistency, IOC = 0.89) ทดสอบระดับความชอบหวาน ด้วยวิธี free choice method<sup>16</sup> ก่อนการทดสอบให้กลุ่มตัวอย่างดออาหาร เครื่องดื่ม และการแปรรูป  $\geq 1$  ชิ้นใน ใช้สารละลายกลูโคส 6 ความเข้มข้น 0.075–1.2 โมลาร์ หรือ  $2–41^{\circ}\text{Bx}$  (ความหวาน  $1^{\circ}\text{Bx}$  หมายถึง ปริมาณน้ำตาลซูครอส 1 กรัม ในสารละลาย 100 กรัมหรือเทียบเท่ากับปริมาณน้ำตาล 1%)<sup>17</sup> เข้ารหัสด้วยสีจัดลำดับการชิมแบบสุ่ม ใช้วิธีจิบและกลืน เว้นระยะ 2 นาที พร้อมล้างปากด้วยน้ำเปล่าระหว่างตัวอย่าง และให้กลุ่มตัวอย่างเลือกระดับความหวานที่ชอบที่สุด มีการทดสอบนำร่องในอาสาสมัคร 20 คน เพื่อตรวจสอบความครอบคลุมของช่วงความเข้มข้น และความเที่ยงของภารัด (Kappa = 0.61, Pearson's  $r = 0.77$ ) ทั้งนี้ การทดสอบชิมและสัมภาษณ์ข้อมูลทั่วไปถูกดำเนินการที่ รพ.สต.

การวิเคราะห์ข้อมูล ใช้สถิติเชิงพรรณนา (จำนวน ร้อยละ และค่าเฉลี่ย) ทดสอบความสัมพันธ์ด้วยสถิติโคชีแคร์ (Chi-square) อัตราส่วนออด (Odds ratio; OR) และวิเคราะห์ปัจจัยที่สัมพันธ์กับระดับความชอบหวาน (สูง/ต่ำ) ด้วยการวิเคราะห์คัดถอยโลจิสติกแบบพหุ (multivariable logistic regression) ช่วงความเชื่อมั่น 95%

### การศึกษาเชิงคุณภาพ

เป็นการศึกษาต่อเนื่องจากการศึกษาเชิงปริมาณ คัดเลือกกลุ่มตัวอย่าง แบบเฉพาะเจาะจงจำนวน 20 คน เลือกรับดับความ

หวานสูงสุด 10 คน และ ต่ำสุด 10 คนหรือจนกว่าข้อมูลจะอิ่มตัว ไม่มีประเด็นใหม่เพิ่มเติม ใช้การสัมภาษณ์แบบกึ่งโครงสร้าง (Semi-structured interview) สัมภาษณ์กลุ่มตัวอย่าง มีแนวคำถามหลัก ครอบคลุมประเด็นเกี่ยวกับ (1) ข้อมูลพื้นฐาน (2) ความรู้สึกและทัศนคติต่อสุขภาพ (3) พฤติกรรมและอุบัติสัมภาระ หรือเครื่องดื่มสุขภาพ (4) ประสบการณ์ส่วนตัวและบริบทครอบครัว ที่เกี่ยวข้องกับการบริโภคหวาน และ (5) ความคิดเห็นเกี่ยวกับอิทธิพลของสังคมและวัฒนธรรมที่มีต่อการบริโภคหวาน เช่นในเดือนรอมฎันมุฮัมมัดศีลอดอย่างไร ท่านมีข้อคิดเห็นอย่างไรว่าอาหารมลายูสุขภาพ เป็นต้น การสัมภาษณ์ใช้ภาษาไทยหรือภาษาอังกฤษตามความถนัดของผู้ให้ข้อมูล ดำเนินการสัมภาษณ์โดยผู้วิจัยเพียงคนเดียว เพื่อให้มีความส่วนรวมของการเก็บข้อมูล ใช้การจดและบันทึกเสียงการสนทนาก่อน วิเคราะห์ข้อมูลด้วยวิธีการวิเคราะห์เนื้อหา (content analysis) ข้อมูลที่ได้จากการสัมภาษณ์ถูกถอดเทปเป็นข้อความเชิงพรรณนา อ่านเข้าเพื่อทำความเข้าใจ จากนั้นทำการเข้ารหัสข้อมูล กำหนดรหัสให้กับประเด็นที่มีความหมายคล้ายกัน และจัดกลุ่มรหัสเหล่านั้นเป็นหมวดหมู่ และประเด็นหลัก เพื่อสังเคราะห์ความเข้าใจเชิงลึกเกี่ยวกับปัจจัยทาง

ตารางที่ 1 ข้อมูลทั่วไปของกลุ่มตัวอย่าง ( $n = 263$  คน)

Table 1 General characteristics of participants ( $n = 263$ )

| Variables                                                                            | n   | %    |
|--------------------------------------------------------------------------------------|-----|------|
| Age ( $\bar{X} = 48.95$ , $S.D = 5.80$ , $Min-Max = 40-59$ )                         |     |      |
| 40-49 years                                                                          | 137 | 52.1 |
| 50-59 years                                                                          | 126 | 47.9 |
| Sex                                                                                  |     |      |
| Male                                                                                 | 16  | 6.1  |
| Female                                                                               | 247 | 93.9 |
| Education level                                                                      |     |      |
| Primary school or below                                                              | 90  | 34.2 |
| Secondary school and vocational certificate                                          | 156 | 59.3 |
| Bachelor's degree                                                                    | 17  | 6.5  |
| Occupation                                                                           |     |      |
| Daily wage workers, agriculture, fishery (labor-intensive)                           | 163 | 62.0 |
| Trading, private business (non-labor)                                                | 33  | 12.5 |
| Government officers, employees, state enterprise staff (non-labor)                   | 12  | 4.6  |
| Housewives, unemployed (non-labor)                                                   | 55  | 20.9 |
| Monthly income                                                                       |     |      |
| Less than 10,000 THB/month                                                           | 231 | 87.8 |
| 10,000–20,000 THB/month                                                              | 24  | 9.1  |
| More than 20,000 THB/month                                                           | 8   | 3.0  |
| Residential area                                                                     |     |      |
| Urban                                                                                | 67  | 25.5 |
| Rural                                                                                | 196 | 74.5 |
| Coastal Area                                                                         |     |      |
| Coastal                                                                              | 50  | 19.0 |
| Non-coastal                                                                          | 213 | 81.0 |
| Body Mass Index (BMI) ( $\bar{X} = 25.27$ , $S.D = 4.50$ , $Min-Max = 14.87-37.78$ ) |     |      |
| Underweight and normal weight (BMI < 23)                                             | 85  | 32.3 |
| Overweight and obese (BMI $\geq 23$ )                                                | 178 | 67.7 |

สังคมและวัฒนธรรมที่มีอิทธิพลต่อระดับความชอบสุขภาพ ใช้การตรวจสอบสามเหลี่ยมด้านข้อมูล (Triangulation) โดยใช้วิธีการเก็บข้อมูลที่ต่างกัน ได้แก่ ข้อมูลจากแบบสอบถามเชิงปริมาณ และการสรุปเนื้อหาให้ผู้ให้สัมภาษณ์ยืนยันความถูกต้องของข้อมูลอีกครั้ง

งานวิจัยนี้ได้ผ่านการพิจารณาเห็นชอบจากคณะกรรมการจริยธรรมการวิจัยในมนุษย์ คณะทันตแพทยศาสตร์ มหาวิทยาลัยสงขลานครินทร์ เลขที่โครงการ EC6607-040

## ผลการศึกษา

### ผลการศึกษาเชิงปริมาณ

กลุ่มตัวอย่างที่ได้มีจำนวน 263 คน อายุเฉลี่ย 48.95 ปี ส่วนใหญ่เป็นเพศหญิง (ร้อยละ 93.9) สำเร็จการศึกษาระดับมัธยมศึกษา หรือประกาศนียบัตร (ร้อยละ 59.3) ส่วนใหญ่ (ร้อยละ 62) มีอาชีพใช้แรงงาน ได้แก่ รับจ้าง เกษตรกรรม หรือประมง ร้อยละ 87.8 มีรายได้ต่ำกว่า 10,000 บาทต่อเดือน ส่วนใหญ่อยู่ในเขตชนบท (ร้อยละ 74.5) และอาศัยในตำบลที่ไม่ติดทะเล (ร้อยละ 81.0) ส่วนใหญ่ (ร้อยละ 67.7) อยู่ในภาวะน้ำหนักเกินเกณฑ์และโรคอ้วน ดังตารางที่ 1

ตารางที่ 2 แสดงว่า กลุ่มตัวอย่างส่วนใหญ่ (ร้อยละ 29.3) มีระดับความหวานที่ขอบที่ 0.3 มิลลาร์ หรือ 10 °Bx กลุ่มตัวอย่างเกือบ

40 เปอร์เซ็นต์มีระดับความหวานที่ขอบอยู่ในกลุ่มสูง (> 10 °Bx) และ ส่วนใหญ่ (ร้อยละ 51.3) บอกว่ารู้สึก “เฉยๆ” ต่อสugar

ตารางที่ 2 ระดับความชอบหวานและการรับรู้ความชอบหวานของตนเอง (n=263 คน)

Table 2 Sweet preference levels and self-perceived sweet preference (n=263)

| Variables                             | n   | %    |
|---------------------------------------|-----|------|
| Sweet preference level (M./ °Bx)      |     |      |
| 0.075/2                               | 33  | 12.5 |
| 0.15/5                                | 55  | 20.9 |
| 0.3/10                                | 77  | 29.3 |
| 0.6/20                                | 44  | 16.7 |
| 0.9/30                                | 42  | 16.0 |
| 1.2/41                                | 12  | 4.6  |
| Sweet preference level (low vs. high) |     |      |
| Low (< 10 °Bx)                        | 165 | 62.7 |
| High (> 10 °Bx)                       | 98  | 37.3 |
| Self-perceived sweet preference       |     |      |
| Like sweet                            | 92  | 35.0 |
| Neutral                               | 135 | 51.3 |
| Dislike sweet                         | 36  | 13.7 |

ผลการศึกษาพบว่า ปัจจัยที่สัมพันธ์กับระดับความชอบหวานสูงและต่ำ อย่างมีนัยสำคัญทางสถิติ ได้แก่ อายุ อาชีพ และการรับรู้ความชอบหวานของตนเอง (ตารางที่ 3) โดยกลุ่มอายุ 50-59 ปี มีระดับความชอบหวานสูงกว่าช่วงอายุ 40-49 ปี 1.7 เท่า อาชีพที่ต้องใช้แรงงาน (อาชีพรับจ้าง เกษตรกรและประมง) มีความชอบหวาน

ระดับที่สูงกว่า อาชีพที่ไม่ใช้แรงงาน (ด้านงาน พนักงานราชการ ว่างงาน และแม่บ้าน) ถึง 2.3 เท่า และพบว่าผู้ที่รับรู้ว่าตนชอบหวาน จะมีระดับความชอบหวานที่ขอบจากการทดสอบ สูงกว่าผู้ที่รับรู้ว่าตนไม่ชอบหรือเฉย ๆ กับสugar ถึง 2.5 เท่า

ตารางที่ 3 ความลัมพันธ์ระดับความชอบหวาน (>10° Bx และ ≤10° Bx) กับตัวแปรอิสระ

Table 3 Association between sweet preference (>10° Bx vs. ≤10° Bx) and independent variables

| Variable                        | Sweet preference |               |             |         |
|---------------------------------|------------------|---------------|-------------|---------|
|                                 | High (>10° Bx)   | Low (≤10° Bx) | OR (95% CI) | p-value |
| Age                             |                  |               |             |         |
| 50-59 years                     | 55 (43.7%)       | 71 (56.3%)    | 1.7         | 0.040*  |
| 40-49 years (ref.=0)            | 43 (31.4%)       | 94 (68.6%)    | (1.0-2.8)   |         |
| Sex                             |                  |               |             |         |
| Female                          | 92 (37.2%)       | 155 (62.8%)   | 1.0         | 0.984   |
| Male (ref.=0)                   | 6 (37.5%)        | 10 (62.5%)    | [0.4-2.9]   |         |
| Education level                 |                  |               |             |         |
| Primary or below                | 38 (42.2%)       | 52 (57.8%)    | 1.4         | 0.230   |
| Secondary or higher (ref.=0)    | 60 (34.7%)       | 113 (65.3%)   | [0.8-2.3]   |         |
| Occupation                      |                  |               |             |         |
| Labor-intensive <sup>1</sup>    | 72 (44.2%)       | 91 (55.8%)    | 2.3         | 0.030*  |
| Non-labor <sup>2</sup> (ref.=0) | 26 (26.0%)       | 74 (74.0%)    | (1.3-3.9)   |         |
| Income                          |                  |               |             |         |
| >10,000 THB/month               | 88 (38.1%)       | 143 (61.9%)   | 1.3         | 0.453   |
| ≤10,000 THB/month (ref.=0)      | 10 (31.3%)       | 22 (68.7%)    | [0.6-2.9]   |         |

**ตารางที่ 3** ความสัมพันธ์ระหว่างความชอบหวาน ( $>10^\circ \text{Bx}$  และ  $\leq 10^\circ \text{Bx}$ ) กับตัวแปรอิสระ (ต่อ)

**Table 3** Association between sweet preference ( $>10^\circ \text{Bx}$  vs.  $\leq 10^\circ \text{Bx}$ ) and independent variables (cont.)

| Variable                                          | Sweet preference               |                                   |             |         |
|---------------------------------------------------|--------------------------------|-----------------------------------|-------------|---------|
|                                                   | High ( $>10^\circ \text{Bx}$ ) | Low ( $\leq 10^\circ \text{Bx}$ ) | OR (95% CI) | p-value |
| Residential area                                  |                                |                                   |             |         |
| Urban                                             | 26 (38.8%)                     | 41 (61.2%)                        | 1.1         | 0.762   |
| Rural (ref.=0)                                    | 72 (42.6%)                     | 124 (57.4%)                       | [0.6-1.9]   |         |
| Living in coastal area                            |                                |                                   |             |         |
| Yes                                               | 16 (32.0%)                     | 34 (68.0%)                        | 0.8         | 0.392   |
| No (ref.=0)                                       | 82 (38.5%)                     | 131 (61.5%)                       | [0.3-1.4]   |         |
| Body mass index                                   |                                |                                   |             |         |
| Overweight/obese ( $\text{BMI} \geq 23$ )         | 70 (39.3%)                     | 108 (60.7%)                       | 1.3         | 0.317   |
| Normal/underweight ( $\text{BMI} < 23$ ) (ref.=0) | 28 (32.9%)                     | 57 (67.1%)                        | [0.8-2.3]   |         |
| Self-perceived sweet preference                   |                                |                                   |             |         |
| Like                                              | 47 (51.1%)                     | 45 (48.9%)                        | 2.5         | 0.001** |
| Neutral / Dislike (ref.=0)                        | 51 (29.8%)                     | 120 (70.2%)                       | (1.5-4.2)   |         |

Note - Using Chi-square, \*p &lt; 0.05, \*\*p &lt; 0.01

- <sup>1</sup> Labor-intensive included daily wage, agriculture, fishery, etc.

- <sup>2</sup> Non-labor included merchant, office staff, government employees, housewives, etc.

เมื่อวิเคราะห์ด้วยสถิติการถดถอยโลจิสติก (logistic regression) พบว่าหลังจากควบคุมตัวแปรอื่น ๆ ในโมเดล พบความสัมพันธ์อย่างมีนัยสำคัญทางสถิติ ( $p < 0.05$ ) ระหว่าง ระดับความชอบหวาน (สูง vs. ต่ำ) กับอาชีพ และการรับรู้ความชอบหวานของตน ผู้ที่มีอาชีพใช้แรงงาน มีโอกาสที่จะมีระดับความชอบหวาน

สูงกว่าผู้ที่มีอาชีพที่ไม่ใช้แรงงาน 2 เท่า ในขณะที่ผู้ที่รับรู้ว่าตนชอบหวานมีโอกาสที่จะมีระดับความชอบหวานสูงกว่าผู้ที่รับรู้ว่าตนไม่ชอบหรือเฉย ๆ กับสหเวณ ถึง 2.2 เท่า โดยโมเดลสามารถทำนายความแปรปรวน ของระดับความชอบหวานได้ร้อยละ 8.7 (ตารางที่ 4)

**ตารางที่ 4** การวิเคราะห์การถดถอยโลจิสติก ระหว่างระดับความชอบหวาน ( $>10^\circ \text{Bx}$  และ  $\leq 10^\circ \text{Bx}$  (ref.)) กับตัวแปรอิสระ

**Table 4** Logistic regression analysis between sweet preference ( $>10^\circ \text{Bx}$  vs.  $\leq 10^\circ \text{Bx}$ ) and independent factors

| Variable                                                                                            | OR (95% C.I.) | p-value | R <sup>2</sup> |
|-----------------------------------------------------------------------------------------------------|---------------|---------|----------------|
| Age (50-59 years vs. 40-49 years (ref.))                                                            | 1.6 [0.9-2.7] | 0.111   | 0.087          |
| Sex (Female vs. Male (ref.))                                                                        | 1.2 [0.4-3.7] | 0.758   |                |
| Education level (Elementary school or lower vs. Secondary school or higher (ref.))                  | 0.8 [0.4-1.3] | 0.344   |                |
| Income ( $>10,000 \text{ THB/month}$ vs. $\leq 10,000 \text{ THB/month}$ (ref.))                    | 0.8 [0.3-1.8] | 0.574   |                |
| Occupation (Labor-intensive vs. Non-labor (ref.))                                                   | 2.0 [1.1-3.5] | 0.018*  |                |
| Living in coastal area (Yes vs. No (ref.))                                                          | 0.8 [0.4-1.7] | 0.377   |                |
| Urbanity (Urban vs. Rural (ref.))                                                                   | 1.1 [0.6-2.0] | 0.616   |                |
| BMI (Overweight/obese ( $\text{BMI} \geq 23$ ) vs. Normal/underweight ( $\text{BMI} < 23$ ) (ref.)) | 1.3 [0.7-2.3] | 0.826   |                |
| Self-perceived sweet preference Like vs. Neutral/Dislike (ref.))                                    | 2.2 [1.3-3.9] | 0.004** |                |

Note - Using logistic regression, \*p &lt; 0.05, \*\*p &lt; 0.01

#### ผลการศึกษาเชิงคุณภาพ

ปัจจัยที่เกี่ยวข้องกับระดับความชอบหวานสูงและต่ำ ผู้ที่ข้อมูลที่สังเคราะห์มาภายนอกทั้งหมดเป็นผู้หญิง กลุ่มละ 9 คน ในกลุ่มที่มีระดับความชอบหวานสูง (A-I) ยอมรับว่าตนชอบ

ความหวาน 3 คน และทำงานใช้แรงงาน 6 คน ในขณะที่กลุ่มที่มีความชอบหวานน้อย (a-i) ส่วนใหญ่ 7 ใน 9 คน รู้สึกเฉย ๆ กับสหเวณ และทำงานใช้แรงงาน 3 คน (ตารางที่ 5) พบเงื่อนไขที่เกี่ยวข้องกับระดับความชอบหวานดังนี้

**ตารางที่ 5 ข้อมูลทั่วไปของผู้ให้สัมภาษณ์**

Table 5 General Characteristics of the Interviewees

| Group                                   | Participant Code | Age | Gender | Occupation                                          | Perception of Sweet |
|-----------------------------------------|------------------|-----|--------|-----------------------------------------------------|---------------------|
| Group with the Highest Sweet Preference | A                | 47  | Female | Housewife                                           | Neutral             |
|                                         | B                | 49  | Female | Vendor                                              | Neutral             |
|                                         | C                | 54  | Female | Fishing worker*                                     | Like                |
|                                         | D                | 42  | Female | Collect sharing fees                                | Like                |
|                                         | E                | 47  | Female | Fishing worker*                                     | Neutral             |
|                                         | F                | 58  | Female | Farmer (rubber tapping) *                           | Neutral             |
|                                         | G                | 59  | Female | Rubber tapping and rice farming*                    | Neutral             |
|                                         | H                | 51  | Female | Factory worker*                                     | Neutral             |
|                                         | I                | 56  | Female | Anchovy processing worker*                          | Like                |
| Group with the Lowest Sweet Preference  | a                | 41  | Female | Housewife                                           | Neutral             |
|                                         | b                | 40  | Female | Vendor                                              | Dislike             |
|                                         | c                | 47  | Female | Vendor                                              | Neutral             |
|                                         | d                | 52  | Female | Food preparation worker*                            | Neutral             |
|                                         | e                | 52  | Female | Housewife                                           | Neutral             |
|                                         | f                | 40  | Female | General laborer (carrying goods at grocery store) * | Neutral             |
|                                         | g                | 41  | Female | Clerk                                               | Neutral             |
|                                         | h                | 45  | Female | Vendor                                              | Neutral             |
|                                         | i                | 54  | Female | Sewing worker*                                      | Dislike             |

Note: \* Refers to Labor-intensive occupations.

**กลุ่มที่มีระดับความชอบหวานสูง**

ในกลุ่มนี้ พบร้อยจังที่เกี่ยวข้องคือ 1. ความหวานทำให้รู้สึกสดชื่นและเติมพลังเมื่อทำงานหนัก 2 ความหวานจากบริษัทครอบครัว 3. สังคมและสิ่งแวดล้อมที่เอื้อต่อการกินหวาน โดยมีรายละเอียดดังนี้

1. ความหวานทำให้รู้สึกสดชื่นและเติมพลังเมื่อทำงานหนัก (ACEFGH) เห็นได้ชัดในผู้ที่ใช้แรงงานทำงานอยู่กลางแดด การได้จิบน้ำหวาน กินของหวาน ช่วยบรรเทาความเหนื่อยล้า เป็นการเติมความสดชื่นและเพิ่มพลังงานในระหว่างการทำงาน เช่นผู้ที่รับจ้างทำประมง “ทำงานหนักที่แพปลา หากรู้สึกอ่อนล้าจะละลายน้ำหวาน ดีมเพื่อฟื้นแรงทันที” (C) “หลังเสร็จงานยกและทำปลา การดื่มน้ำหวานช่วยให้สดชื่นและรู้สึกดีขึ้น” (E) ผู้ที่เป็นเกษตรกรเช่น ผู้ให้สัมภาษณ์ G มีอาชีพกรีดยางและทำนา จะพากันและชาที่เติมน้ำตาลจากบ้านไปทำงานด้วยเสมอ เล่าว่า “เมื่อรู้สึกเหนื่อยก็กินของหวานแล้วให้ความรู้สึกอิ่ม และสดชื่น ถ้าไม่กินจะเหนื่อย” (G)

2. ความหวานจากบริษัทครอบครัว (ABDEFGHI) แม่ทำอาหารและขนมที่มีรสชาติหวานให้กินเป็นประจำตั้งแต่เด็ก เช่น “ผู้ใหญ่เขาทำแบบนั้น สอนมาแบบนั้น... แม่ชอบกินหวานๆ เราเลยชินรสชาติแบบนั้น” (A) ตัวอย่างที่ชัดเจนคือสูตรกล้วยเชื่อมที่แม่ได้สอนให้ทำ “สูตรกล้วยเชื่อมของแม่คือกล้วย 1 ลูก น้ำตาล

1 ช้อนโต๊ะ ไม่ใช่สูตรนี้รู้สึกไม่อร่อย” (A) แม่ปัจจุบันผู้ให้สัมภาษณ์ (A) อาจจะไม่ได้กินของหวานบ่อยนัก เพียงสัปดาห์ละ 1-2 ครั้ง แต่เมื่อทำขนมเองก็มักจะปรุงให้หวานจัดตามรสนมื่อของแม่ที่เคยชิน การสังเกตและเห็นพฤติกรรมการกินจากสมาชิกในครอบครัว โดยเฉพาะคุณแม่ จึงเป็นปัจจัยสำคัญที่ทำให้ผู้ให้สัมภาษณ์กลุ่มนี้ ยังคงนิยมรสนหวาน หรือการใช้ชีวิตคุ้มค่าให้กับครอบครัว แม่ต้องปรับพฤติกรรมการปรุงอาหารให้สอดคล้องกับ รสนิยมของสามีที่ชอบรสน้ำหวาน ความแตกต่างเห็นได้ชัดใน “น้ำบูดู” ซึ่งบ้านเดิมของเธอจะปรุงด้วยสติ๊กและเบรี่ยวโดยไม่ใส่น้ำตาล แต่เมื่อมาอยู่บ้านสามี ต้องใส่น้ำตาลเป็นส่วนผสมสำคัญ เธออธิบายว่า “หวานคือเข้มข้น สามีชอบ อย่างบูดู บ้านก็(พี่)ใส่บูดู แนะนำ แต่มาบ้านสามี (สามี)ใส่น้ำตาลด้วย ถ้าทำแบบเดิมกลัวไม่มี ใครกิน เราก็ไม่มีมันใจที่จะทำ” (E) สะท้อนให้เห็นว่า การแต่งงานและการย้ายถิ่นฐานไปอยู่กับครอบครัวฝ่ายชาย ไม่เพียงเปลี่ยนแปลงสภาพแวดล้อมทางสังคม แต่ส่งผลต่อรูปแบบการบริโภคด้วย ผู้ให้สัมภาษณ์ จึงค่อยๆ ปรับตัวตามความชอบของสามีและครอบครัวใหม่ จนทำให้ความหวานกล้ายเป็นส่วนหนึ่งของการปรุงอาหารในประจำวัน

3. สังคมและสิ่งแวดล้อมที่เอื้อต่อการกินหวาน (DEH) บริษัทการทำงานในแหล่งที่มีอาหารหวานขายและหาซื้อได้ง่ายทำให้เลือกิน

อาหารหวานเป็นประจําจันติตรสชาติหวาน ผู้ให้สัมภาษณ์ D มีอาชีพเก็บค่าเชร์ในตลาด เรื่อเล่าว่า “ กะ(พี่)ไปตลาดทุกวัน และชอบซื้อขนมมาตุนไว้ที่บ้าน ให้ลูกและครอบครัวกิน เช่น ขนมปีบราวนกอซู (ชื่อขนมท้องถิ่น) เบอร์เกอร์ หรือบูบิกาเจ(ชื่อขนมท้องถิ่น) ที่มีขายทั่วไปในราคากู๊ด หากลูกไม่กิน เราก็มักจะกินเอง ” ทำให้ของหวานกล้ายเป็นส่วนหนึ่งของชีวิตประจำวัน หรือผู้ให้สัมภาษณ์ H มีอาชีพทำงานคลอกปลาหมึกในโรงงาน ให้สัมภาษณ์ว่า “ กะ(พี่) รึมชอบดื่มน้ำหวานมากขึ้นเมื่ออายุประมาณ 40 ปี โดยเฉพาะในช่วงพักจะไปซื้อชาดำหรือชาเย็นที่ขายในโรงพยาบาลมีหลายร้านเลย หน้าโรงงานก็มีโซนที่ขายของ มีหมุดขนมหวานน้ำหวาน แล้วแต่จะเลือก พอดีกินน้ำหวานรู้สึกสดชื่น กินเกือบทุกวัน ”

#### กลุ่มที่มีระดับความชอบหวานต่ำ

ในกลุ่มนี้ พับปัจจัยเกี่ยวข้องคือ 1. ความกังวลสุขภาพของตนเองและคนใกล้ตัวเกี่ยวกับโรคเบาหวาน และ 2. อิทธิพลจากบริบทครอบครัวที่ทำให้ไม่ชอบหวาน โดยมีรายละเอียดดังนี้

1. ความกังวลสุขภาพของตนเองและคนใกล้ตัวเกี่ยวกับโรคเบาหวาน (abcdgi) : ปัจจัยสำคัญที่พบร่วมกันในผู้ให้ข้อมูล หลายคน ถูกกระตุ้นจากการมีสมาชิกในครอบครัวหรือคนใกล้ชิดเจ็บป่วยด้วยโรคนี้ ประสบการณ์ดังกล่าวทำให้เกิดแรงจูงใจให้หลีกเลี่ยงอาหารหวานหรือลดการบริโภคน้ำตาลอ่อนย่างจัง จน ผู้ให้สัมภาษณ์ d เล่าว่า “ สาเหตุที่ชอบหวานน้อย คือ กลัวเป็นโรคเบาหวานค่ะ ตั้งแต่พี่สาวเป็นแพลงเบาหวานต้องดูแลแพลงที่ขา เลยรู้สึกกลัว ” หรือผู้ให้สัมภาษณ์ i ที่มีจุดเปลี่ยนของการทานหวานลดลงเมื่อสามีได้เสียชีวิตกับการเป็นเบาหวาน “ เราต้องเลี้ยงลูกคนเดียว ถ้าเราเป็นอะไรอก็คนใจจะเลี้ยงลูก สามีเสียชีวิตเมื่อตอนอายุ 40 ปี ก็จะอายุประมาณ 38 ปี เสียชีวิต เพราะเป็นเบาหวาน สามีชอบกินทั้งชาเย็นทั้งกาแฟ อยู่อย่างนี้ จากพฤติกรรมการกินที่รู้สึกเห็นว่าไม่ควร ก็เลยเปลี่ยนเรื่องแล้วที่นิ้องของสามีเป็นพยาบาล จึงแนะนำว่าไม่ต้องกินหวานอย่างไปบ้านพยาบาล เค้าก็จะไม่ใส่ความหวานเลย ตอนแรกเปลี่ยนจากหวานมาก เป็นหวานนิดเดียวแล้วไม่กินหวานเลยจากในน้ำตาล หนึ่งช้อนครึ่ง เหลือครึ่งช้อนแล้วไม่ใส่เลย มันใช่เวลา ”

#### 2. อิทธิพลจากบริบทครอบครัวที่ทำให้ไม่ชอบหวาน (abdefh)

เช่น การมีป่วยเบาหวานในบ้านนำไปสู่การปรับรสชาติอาหารให้จัดลง ทั้งครอบครัว เช่น ผู้ให้สัมภาษณ์ a กล่าว “ แม่ก็เป็นเบาหวานด้วย เราเก็บเลยต้องกินจีดตาม ” หรือผู้ให้สัมภาษณ์ b เล่าว่า “ เดี๋ยวนี้แพลงเป็นเบาหวานยิ่งไม่หวานกินเลย ไม่ซื้อตั้งแต่แรกเลย พอดีเป็นเบาหวานป้อมลงเลย เรายังต้องลดกินหวานตามแพลงไปด้วย จนเดี๋ยวนี้กินหวานຍ่อยไม่ได้แล้ว รู้สึกเลี่ยน พอดีจะกินหวานเราก็จะเตือนไม่ต้องกินนะหวานๆ ” นอกจากนี้ ผู้ให้สัมภาษณ์หลายคน เติบโตมาในครอบครัวที่ไม่คุ้นเคยกับสุขภาพที่ดีตั้งแต่วัยเด็ก อาหารในบ้านมักปรุงรสจัด หรือเน้นรสเผ็ดและเปรี้ยวมากกว่าการเติมน้ำตาล เช่น

“ ไม่ชอบหวานตั้งแต่เด็ก... ตอนเด็ก ๆ ที่บ้านปรุงอาหารแบบจัด ๆ ไม่หวานไม่เค็ม ” (d) หรือ “ แม่เป็นคนครัวไม่กินสุขหวานเลย คิดว่าอาจจะติดมาจากการที่บ้านด้วย ” (b)

#### วัฒนธรรมและประเพณีที่มีผลต่อการบริโภคน้ำตาล

ในชุมชนมลายูสิม นำตาลไม่ได้เป็นเพียงเครื่องปรุงรสแต่ยังเป็นยาที่สำคัญในวัฒนธรรม ประเพณี และศาสนา การสัมภาษณ์ผู้คนในพื้นที่เผยแพร่ให้เห็นว่า น้ำตาลสดแทรกอยู่ในหลายช่วงเวลาของชีวิต ตั้งแต่งานบุญ งานศาสนา ไปจนถึงการต้อนรับแขก มีรายละเอียดดังนี้

1. บทบาทของน้ำตาลในงานบุญและพิธีทางศาสนา: ในงานแต่งงาน งานศพ หรืองานทำบุญ การนำน้ำตาลไปมอบให้เจ้าภาพถือเป็นธรรมเนียมที่มีความหมายลึกซึ้ง ผู้ให้สัมภาษณ์หลายคนบอกว่า น้ำตาลเปรี้ยบเสมือนสัญลักษณ์ของความมีน้ำใจ การเอื้อเฟื้อเผื่อแผ่ และการแบ่งปันความหวานชื่นให้กับผู้อื่น ส่วนใหญ่จะมอบน้ำตาล 2 ถุง คิดเป็นมูลค่าราว 100 บาท แต่หากเป็นงานใหญ่ก็อาจมอบเป็นกระสอบ “ เมื่อก่อนส่วนมากจะเป็นข้าวสาร เดี๋ยวนี้ ข้าวสารราคาแพง ถ้าเทียบกับน้ำตาลแล้ว... ข้าวสารต้องหัวหม้อไม่สีดวกสักเท่าไร ถ้าน้ำตาล ก็ต่ำซื้อสัก 2 กิโล หัวไป ” (A) น้ำตาลที่นำไปในงานเหล่านี้จึงไม่ใช่เพียงของฝาก แต่ยังแฟ่ความหมายของการส่งต่อความอุดมสมบูรณ์ และความสุข “ กล้ายเป็นวัฒนธรรมไปแล้ว... ทุกงานจะเป็นน้ำตาล ส่วนใหญ่งานศพกับงานเลี้ยง... งานน้ำชา (งานศพ) ญาติ ๆ รู้สึกเครียด เรากินน้ำตาลเพราความหมายดี น้ำตาลเหมือนความหวาน เป็นความรู้สึกชื่นใจที่เราให้เค้าไป ” (c)

2. การบริโภคหวานในเดือนรอมฎัน: เดือนรอมฎันเป็นช่วงเวลาที่ชุมชนมลายูคงดอาหารและนำตั้งแต่เช้าจนตัวบ้านลับฟ้า เมื่อถึงเวลาละศีลอด อาหารและเครื่องดื่มหวานจะถูกจัดเตรียมมากกว่าปกติ เพื่อฟื้นฟูพลังงานที่สูญเสียไป โดยเริ่มจากการรับประทานอินฟราลัม ตามหลักศาสนา ก่อนต่อตัวด้วยขนมหวาน ดังบทสัมภาษณ์ที่ว่า “ เดือนรอมฎันก็จะมีขนมหวานที่กินเพิ่มขึ้นบ้าง ถ้าไม่ทำเองก็ซื้อในตลาดตลาดก็มีขนมหวานขายเยอะ ขนมหวานที่ไม่ได้กินช่วงเดือนปกติก็ได้กินเดือนนี้แหละ.. คนซื้อก็เยอะ.. เอาไว้ทานตอนละศีลอด จากนั้นไปกลางคืนแล้วก็มาน้ำมนต์ ” (g)

3. การเลี้ยงรับรองแขก: ในสังคมมลายูท้องถิ่น การต้อนรับแขก ด้วยน้ำหวานหรือขนมหวานถือเป็นมารยาททางสังคมที่สำคัญ หากมีแขกมาเยี่ยมเยือน เจ้าบ้านตระียมน้ำชาสุขหวานหรือน้ำหวานชนิดอื่นไว้เพื่อแสดงถึงการต้อนรับอย่างอบอุ่นและเคร่งครัด “ ถ้ามีแขกมาต้องเตรียมน้ำชาหวานๆ ให้ดีมี เป็นการต้อนรับที่ดี ” (B) ภาพรวมของเรื่องราวเหล่านี้สะท้อนให้เห็นว่า น้ำตาลไม่ได้มีเพียงความหมายด้านรสชาติ แต่ยังเป็นสัญลักษณ์ทางสังคม วัฒนธรรม และศาสนา ที่เชื่อมโยงผู้คนเข้าหากัน

## บทวิจารณ์

กลุ่มตัวอย่างในการศึกษานี้ เป็นมุสลิมเชื้อสายมลายู ก่อนวัยผู้สูงอายุ (40-59 ปี) อาศัยอยู่ในพื้นที่อำเภอสายบุรี จังหวัดปัตตานี ส่วนใหญ่เป็นเพศหญิง มีเศรษฐฐานค่อนข้างต่ำ ส่วนใหญ่มีอาชีพที่ต้องใช้แรงงานการทำงาน (รับอาชีพรับจ้างรายวัน เกษตรกรรม หรือประมง) มีความหลากหลายน้อย จึงมีข้อจำกัดในการอ้างอิงไปยังกลุ่มประชากรอื่น ๆ แต่อาจเป็นตัวแทนกลุ่มก่อนวัยผู้สูงอายุที่มีเศรษฐฐานที่ไม่ค่อยดี และในบริบทชุมชนมุสลิมมลายู พบรากลุ่มตัวอย่างเกินครึ่งภาวะอ้วน เกิดได้จากหลายสาเหตุ โดยเฉพาะพฤติกรรมการบริโภคอาหารที่ไม่เหมาะสม<sup>18</sup>

กลุ่มตัวอย่างในการศึกษานี้ ส่วนใหญ่เป็นเพศหญิง (ร้อยละ 93.9) อธิบายได้คือ ช่วงเวลาการเก็บข้อมูลซึ่งดำเนินการในเวลากลางวันระหว่างวันทำงาน ทำให้ผู้ชายส่วนใหญ่ซึ่งประกอบอาชีพนอกบ้าน เช่น ประมงเกษตรกรรมหรือรับจ้าง ไม่อยู่ในชุมชนในช่วงเวลาดังกล่าว ในขณะที่ผู้หญิงซึ่งมักอยู่บ้านเพื่อดูแลครอบครัว มีโอกาสเข้าร่วมการศึกษามากกว่า ข้อจำกัดนี้อาจส่งผลให้ผลการศึกษาสะท้อนลักษณะของกลุ่มผู้หญิงมากกว่าผู้ชาย อย่างไรก็ตาม กลุ่มนี้ยังคงมีความสำคัญทางสังคมเนื่องจากเป็นผู้ดูแลและตัดสินใจเรื่องอาหารของครอบครัวในชุมชนมลายูมุสลิม

จากการศึกษาพบว่ากลุ่มตัวอย่างส่วนใหญ่ (ร้อยละ 29.3) มีความชอบหวานที่ 0.3 มोลาร์หรือ  $10^{\circ}$  Bx เมื่อ เปรียบเทียบการศึกษาของ Steiner และคณะในปี 1984<sup>16</sup> ศึกษาความชอบหวานของชาวเบดูอินในกลุ่ม เด็กอายุ 12 ปีในประเทศไทย ใช้วิธีทดสอบที่คล้ายกัน พบร่วงเด็กชาวเบดูอินที่อาศัยอยู่ในเขต เมือง และชนบท ส่วนใหญ่เลือกความชอบหวานที่ 0.6 มोลาร์ ( $20^{\circ}$  Bx.) และ 0.15 มोลาร์ ( $5^{\circ}$  Bx.) ตามลำดับ และการศึกษาของ Jamel และคณะในปี 1996<sup>3</sup> ศึกษาความชอบหวานของชาวอิรัก จำนวน 4,152 คน อายุ 6-30 ปี พบร่วงชาวอิรักที่อาศัยในเขตเมือง เลือกความชอบหวานที่ระดับ 0.59 มोลาร์ ( $20^{\circ}$  Bx) ถึง ร้อยละ 88.2 และชาวชนบทในอิรักส่วนใหญ่ เลือกความชอบหวานที่ระดับ 0.29 มोลาร์ ( $10^{\circ}$  Bx) ส่วน การศึกษาของ Ashi และคณะในปี 2017<sup>15</sup> ศึกษาความชอบหวาน ของนักเรียน 3 ประเทศคือ เม็กซิโก อิตาลี และชาอุดีอาระเบีย พบรากลุ่มตัวอย่างแต่ละประเทศ มีความชอบหวานต่างกัน โดยนักเรียนในประเทศไทย มากกว่าในประเทศอิตาลี และชาอุดีอาระเบีย 0.075 มोลาร์ ( $2^{\circ}$  Bx) ในขณะที่ส่วนใหญ่ในประเทศไทย 0.24 มोลาร์ ( $82^{\circ}$  Bx) ซึ่งเป็นระดับความหวานที่สูงมาก แสดงให้เห็นว่า อายุ ที่อยู่อาศัยและวัฒนธรรม ต่างกันจะมีระดับความชอบหวานต่างกัน เนื่องจาก การรับรู้รสชาติได้รับอิทธิพลจากหล่ายปัจจัย ได้แก่ พันธุกรรม สิ่งแวดล้อม อายุ เพศ เชื้อชาติ วัฒนธรรม ตลอดจนประสบการณ์ความคุ้นชิน ในอาหารที่ตนได้รับ<sup>2</sup> เช่นคนปัตตานีคุ้นชินกับอาหารที่มีรสหวาน

จากกะทิ เนื้องจากกะทิเป็นพืชท้องถิ่นที่หาได้ง่าย<sup>24</sup> ในขณะที่คนเม็กซิกันนิยมอาหารที่มีรสเผ็ด เปรี้ยว เค็ม ทำให้ชื่อระดับความหวานที่น้อยกว่า<sup>15</sup> หรือประเทศชาอุดีอาระเบีย ที่มีรายงานว่าเด็กนักเรียนกว่า 90% บริโภคอาหารและเครื่องดื่มรสหวานเป็นประจำ ส่งผลต่อการมีระดับความชอบหวานที่มากกว่า<sup>15</sup> เมื่อเปรียบเทียบความชอบหวานของกลุ่มตัวอย่างในการศึกษานี้ จะใกล้เคียงกับความชอบหวานของกลุ่มที่อาศัยในเขตชนบทในประเทศไทย<sup>3</sup> และอิสราเอล<sup>16</sup> ซึ่งมีบริบทใกล้เคียงกับสังคมในอำเภอสายบุรี ที่ส่วนใหญ่เป็นสังคมชนบท

การศึกษานี้ แบ่งระดับความชอบหวานเป็น 2 กลุ่ม ได้แก่ กลุ่มที่มีระดับความชอบหวานต่ำ ( $<10^{\circ}$  Bx) และ สูง ( $>10^{\circ}$  Bx) โดยการเลือกระดับความหวานที่ 0.3 มोลาร์หรือ  $10^{\circ}$  Bx หรือ 10 เปรอร์เซ็นต์ เนื่องจากเป็นระดับที่กลุ่มตัวอย่างส่วนใหญ่เลือก และสอดคล้องกับบริโภคน้ำตาลเริ่มต้นที่องค์กรอนามัยโลกแนะนำต่อวัน<sup>11,12</sup> ผลการศึกษานี้ พบว่ามีกลุ่มตัวอย่างถึงร้อยละ 37.3 ที่มีระดับความชอบหวานสูง ( $>10^{\circ}$  Bx) หรือ หากนับผู้ที่มีระดับความชอบหวานในเกณฑ์ปัจจุบันขององค์กรอนามัยโลกที่  $\leq 5^{\circ}$  Bx พบว่ามีกลุ่มตัวอย่างเพียง 33.4% ที่ผ่านเกณฑ์ดังกล่าว แสดงให้เห็นถึงความจำเป็นในการดำเนินมาตรการส่งเสริมให้ประชาชนกลุ่มนี้ลดการบริโภคน้ำตาล เนื่องจากระดับความชอบหวานที่เพิ่มขึ้น สัมพันธ์กับปริมาณและความถี่ในการบริโภคน้ำตาลที่เพิ่มขึ้น<sup>3</sup> ซึ่งเป็นปัจจัยเสี่ยงต่อการเกิด โรค NCDs โรคอ้วน และโรคฟันผุ

เมื่อวิเคราะห์ความสัมพันธ์ระหว่างตัวแปรสองตัว พบความสัมพันธ์อย่างมีนัยสำคัญทางสถิติระหว่าง ระดับความชอบหวานต่ำ ( $< 10^{\circ}$  Bx) และ สูง ( $>10^{\circ}$  Bx) กับ อายุ อาชีพที่ใช้แรงงาน และการรับรู้ความชอบหวานของตน แต่เมื่อวิเคราะห์ด้วยการถดถอยโลจิสติก (Logistic Regression) พบร่วง หลังจากควบคุมตัวแปรอื่น ๆ มีเพียงอาชีพ และ การรับรู้ความชอบในอาหารสหหวาน ที่ยังคงสัมพันธ์กับระดับความชอบหวานอย่างมีนัยสำคัญทางสถิติ ( $p < 0.05$ ) พบร่วงอาชีพที่ใช้แรงงานและการรับรู้ว่าตนเองมีความชอบหวานสูง จะมีระดับความชอบหวานสูงกว่า กลุ่มอาชีพที่ไม่ใช้แรงงานและการรับรู้ว่าตนเองชอบหวานต่ำประมาณ 2 และ 2.2 เท่า ตามลำดับ การที่อาชีพที่ใช้แรงงานมีระดับความชอบหวานที่สูง มากกว่ากลุ่มไม่ใช้แรงงาน อาจจะเป็นเพราะอาชีพที่ใช้แรงงานมีความต้องการพลังงานโดยเฉพาะจากน้ำตาลเพื่อใช้ในการทำงานสูงกว่า ซึ่ง น้ำตาลเป็นแหล่งพลังงานที่หาได้ยาก และสามารถเพาะปลูกให้พลังงานได้เร็ว<sup>20</sup> ผู้ที่รับรู้ว่าตนเองมีความชอบหวานสูง จะมีระดับความชอบหวานสูงกว่าผู้ที่รับรู้ว่าตนเองรู้สึกเฉยๆหรือไม่ชอบสหหวาน แสดงให้เห็นว่า การรับรู้ระดับความชอบหวานของตนเองสามารถบอกถึงระดับความชอบหวานจากการทดสอบได้ดังนั้น การสอบถามระดับความหวานที่ชอบอาจบอกระดับความหวานที่บุคคลนั้นชอบจริง ๆ ได้ เมื่อจะไม่ถูก

ต้องทุกคน เนื่องจากยังมีบางคนที่อาจรับรู้ความหวานที่ตนเองชอบ ไม่ต่างกับระดับความชอบหวานจริง พบว่าไม่เดลสามารถถือทำนาย ความประปรวน ของระดับความชอบหวานได้เพียงร้อยละ 8.7 ซึ่ง น้อยมาก ส่วนอีกร้อยละ 91.3 เป็นอิทธิพลของตัวแปรอื่นที่ไม่ได้อยู่ในการศึกษานี้

ผลการศึกษาเชิงคุณภาพในการศึกษานี้ ช่วยอธิบายผล การศึกษาเชิงปริมาณให้มีความลึกซึ้ง และเพิ่มความเข้าใจบริบท และวัฒนธรรมที่มีต่อพฤติกรรมได้ชัดเจนยิ่งขึ้น เช่น ผู้ที่ประกอบอาชีพที่ใช้แรงงาน เช่น ทำสวน ทำนา หรือประมง มีแนวโน้มเลือกความหวานระดับสูงกว่าผู้ที่ไม่ใช้แรงงานในเชิงคุณภาพพบว่า ผู้ที่ สัมภาษณ์หลายคนกล่าวถึงความรู้สึกว่า “น้ำหวานช่วยให้มีแรง” หรือ “คลายเหนื่อยได้” โดยเฉพาะในช่วงทำงานกลางแจ้งในสภาพอากาศที่ร้อน เช่น ผู้ที่สัมภาษณ์รายหนึ่งกล่าวว่า “ทำงานเหนื่อยมาก ถ้าได้น้ำหวานจะสดชื่นขึ้นทันที” ข้อมูลนี้สะท้อนให้เห็นถึง แรงจูงใจ ทางร่างกาย ที่เชื่อมโยงกับพฤติกรรมการบริโภคหวาน และอธิบาย เหตุผลที่ทำให้กลุ่มแรงงานมีความชอบหวานสูงในเชิงพฤติกรรม ทั้ง ยังแสดงให้เห็นว่า “การบริโภคหวาน” ไม่ใช่เพียงเรื่องของรสนิยม เท่านั้น แต่ยังเป็นเครื่องมือเพื่อการพัฒนาในบริบทการทำงาน การรับรู้ว่าตนเองชอบหวาน” ซึ่งผลการสัมภาษณ์สนับสนุนข้อค้น พบนี้โดยผู้ที่รับรู้ว่าตนเองชอบหวาน มักมีพฤติกรรมสอดคล้องกับ คำรับรู้นั้น เช่น การเติมน้ำตาลเพิ่ม การเลือกซื้อขนมหวานทุกวัน เป็นต้น แสดงให้เห็นว่าการรับรู้ต้นเองด้านพฤติกรรมการบริโภค มี อิทธิพลสูง และสามารถสะท้อนพฤติกรรมจริงได้<sup>21</sup>

บริบททางสังคมและวัฒนธรรมที่มีผลต่อความชอบหรือ การหลีกเลี่ยงสหวาน ซึ่งไม่สามารถอธิบายได้จากการศึกษาเชิง ปริมาณเพียงอย่างเดียว พฤติกรรมการบริโภคหวานในชุมชนไม่ได้ เกิดขึ้นมาอย่างไม่มีสาเหตุ หากแต่ผู้ที่รับรู้ว่าตนชอบหวาน ครอบครัว และความสัมพันธ์ในชุมชน จากการสัมภาษณ์พบว่า ผู้ที่ เดิมที่ในครอบครัวที่นิยมอาหารหรือขนมหวาน มักมีแนวโน้ม ชอบหวานมากกว่าผู้ที่เดิมที่ในครอบครัวที่ทำอาหารสจีด เช่น “แม่ทำขนมทุกวันรักกินจนขิน” หรือ “บ้านไม่กินหวานเลยไม่ชอบหวาน” ซึ่งสะท้อนกระบวนการเรียนรู้ทางสชาติ ที่เกิดตั้งแต่วัยเด็กผ่าน รูปแบบการเลี้ยงดู เด็กที่เดิมโตมาในสิ่งแวดล้อมที่บริโภคน้ำตาลสูง ย่อมมีแนวโน้มจะชอบและยอมรับสหวานเป็นพิเศษเมื่อโตขึ้น ดังกรณีผู้ที่ข้อมูลบางคนที่แม่ชอบทำขนมหวานและแบ่งปันให้ลูกกิน ตั้งแต่เด็ก ส่งผลให้บุคคลนั้น “ติดหวาน” โดยไม่รู้ตัวตั้งแต่วัยเยาว์ ในทางตรงกันข้าม เด็กที่ครอบครัวไม่ได้นเน้นอาหารสหวาน (เช่น แม่ ไม่กินหวานเลย หรือปุงอาหารสชาติก่าง ๆ) ก็จะไม่ได้รับการ เสิร์ฟแรงในด้านนี้ แม้เมื่อเดิมโตขึ้นจะสามารถเปลี่ยนมาชอบหวานได้ จากปัจจัยอื่น แต่ก็เป็นการยืนยันว่า “เรากินในสิ่งที่คุณชอบข้างเรา กิน” ซึ่งเป็นส่วนหนึ่งของกระบวนการเรียนรู้ทางสังคมทางอาหาร

ในส่วนของปัจจัยอัตนธรรมและประเพณีได้แก่ ในชุมชน น้ำมันมีธรรมเนียมเวลางานบุญหรืองานทางศาสนา ผู้คนจะหัวน้ำตาล ไปมอบให้เจ้าภาพในงานเนื่องจากเป็นของใช้ที่มีประโยชน์ สามารถ นำไปใช้ประโยชน์ได้หลากหลาย การมีความหมายเชิงสัญลักษณ์ ที่แทนความหวานซึ่นในใจหรือการบริโภคอาหารหวานเพิ่มขึ้นใน เดือนรอมฎัน เป็นสิ่งที่บ่งบอกว่าการบริโภคน้ำตาลและอาหารหวาน เป็นเรื่องปกติในชีวิตประจำวันของคนมลาย และน้ำตาลไม่ได้เป็น เพียงอาหาร แต่น้ำตาลยังทำหน้าที่เป็นวัตถุทางวัฒนธรรมที่ให้ ความหมายบางอย่าง เช่น ความหวานซึ่น เป็นของที่ระลึกที่มีคุณค่า ใช้ประโยชน์ได้ และเป็นเครื่องมือในการเข้าสังคมของมนุษย์ผ่าน การทานอาหารหวานด้วยกัน การเลี้ยงเครื่องดื่มหวานให้แขกถือ เป็นมารยาททางสังคม การปฏิเสธไม่กินหวาน เช่นน้ำหวานจึงอาจ ตีความได้ว่าไม่เข้าร่วมสังคมหรือวัฒนธรรมนั้นอย่างเต็มที่ ส่งผลให้ พฤติกรรมการบริโภคหวานดำเนิร่องอยู่ในระดับสูงแม้ผู้คนจะเริ่มรับรู้ ถึงผลกระทบของน้ำตาลต่อสุขภาพมากขึ้น

อย่างไรก็ตาม มีความสัมพันธ์ระหว่างการได้รับสหวานเข้า กับการชอบสหวานยังคงเป็นประเด็นที่มีข้อถกเถียง โดยยังไม่สามารถ สรุปได้ชัดว่าการได้รับสหวานเข้าฯ จะทำให้เกิดภาวะติดหวานหรือ เพิ่มความชอบหวาน ทั้งในผู้ใหญ่และเด็ก<sup>22</sup> ในทางตรงกันข้าม การ ได้รับสหวานในระยะสั้นมากทำให้ความอยากหวานลดลงชั่วคราว และการได้รับระยะยาวไม่มีผลลดเจน ความเชื่อที่ว่าการกินหวานจะ “ยิ่งชอบหวาน” จึงเป็นเพียงสมมติฐานที่ยังไม่สอดคล้องกับหลักฐาน เชิงทดลองปัจจุบัน ปัจจัยที่มีอิทธิพลมากกว่า ได้แก่ พันธุกรรม ความ แตกต่างเฉพาะบุคคล และ บริบททางวัฒนธรรม/สิ่งแวดล้อม<sup>22</sup> เมื่อเชื่อมโยงกับผลการศึกษานี้ พบว่าความชอบหวานในระดับบุคคล ไม่ได้อธิบายได้จากการได้รับสหวานเข้าฯ เพียงอย่างเดียว แต่ส่วนที่ สำคัญของระบบสังคมและวัฒนธรรมที่ทำให้รับสหวานดำเนิร่องอยู่ในวิถี ชีวิตคนในชุมชน กล่าวคือ การคงอยู่ของความหวานในกลุ่มตัวอย่าง อาจไม่ได้เป็นผลจากกลไกสืรีร่วมชาติ แต่เกิดจากกระบวนการ เรียนรู้ การแบ่งปันอาหาร และการสร้างความสัมพันธ์ทางสังคมผ่าน “สหวาน” ที่ถูกมองเป็นสัญลักษณ์ของความเอื้ออาทรและความสุข ในชุมชน การเข้าใจวัฒนธรรมของความชอบหวาน เช่นนี้ จึงมีความสำคัญ ต่อการออกแบบมาตรฐานการลดการบริโภคน้ำตาลที่เหมาะสมกับบริบท พื้นที่ เช่น กิจกรรมการปรับสูตรอาหารท้องถิ่นให้ลดระดับความหวานลง การสนับสนุนการลดศีลอดด้วยอินพลาสติกและน้ำเปล่าแทนน้ำหวาน เป็นต้น ซึ่งไม่รองรับสหวานเพียงในฐานะปัจจัยทางโภชนาการ แต่เป็น ส่วนหนึ่งของอัตลักษณ์และความหมายทางสังคมที่ต้องใช้การสื่อสาร และการปรับเปลี่ยนค่านิยมของคนในสังคมร่วมกัน

การศึกษานี้เป็นการศึกษาวัยก่อนสูงอายุ ซึ่งเป็นวัยที่ มีความเสี่ยงต่อการเกิดโรคต่าง ๆ ที่สามารถป้องกันได้ก่อนจะมี อาการรุนแรงในวัยสูงอายุ และเป็นการศึกษาแรก ๆ ที่ศึกษาระดับ

ความชอบหวานและปัจจัยที่เกี่ยวข้องในพื้นที่ที่มีบริบทวัฒนธรรมเฉพาะที่มีการนำหลักการอิสลามมาดำเนินวิถีชีวิต อย่างไรก็ตาม การศึกษานี้อาจมีข้อจำกัดในการอ้างอิงไปยังกลุ่มประชากรที่มีเศรษฐกุณที่สูง หรือ ประชากรในเขตเมือง รวมถึงประชากรที่นับถือศาสนาอื่น ๆ หรือมีบริบททางสังคม วัฒนธรรมที่แตกต่างกัน ดังนั้น จึงควรมีการศึกษาในกลุ่มและบริบทอื่น ๆ รวมถึงศึกษาปัจจัยทางครอบครัว สังคม วัฒนธรรม และสิ่งแวดล้อม ที่มีอิทธิพลต่อระดับความชอบหวานในเด็ก เพื่อจะได้ส่งเสริมให้มีการเลี้ยงดูหรือจัดสิ่งแวดล้อมให้เด็กมีระดับความหวานที่ชอบที่เหมาะสมตั้งแต่เด็กๆ ไป และเครื่องมือนี้ยังมีข้อจำกัดบางประการได้แก่การเลือกความหวานด้วยการขมสารและลายชูโครสอ้างไม่สามารถอธิบายได้โดยตรงถึงความชอบหวานในอาหารประเภทอื่น เช่น อาหารหวานหรือของหวานที่ซับซ้อนกว่า เนื่องจากองค์ประกอบทางเนื้อสัมผัส กลิ่น และบริบทของการบริโภค มีผลต่อการรับรู้สensations แตกต่างกัน<sup>23</sup> ดังนั้นการตีความผลลัพธ์อาจมีข้อจำกัดในการอาหารรูปแบบอื่น โดยควรมีการวิจัยในอนาคตเพื่อเปรียบเทียบความสัมพันธ์ของระดับความชอบหวานระหว่างเครื่องดื่มและอาหารประเภทอื่น

## บทสรุป

การศึกษานี้ใช้วิธีจัยแบบผสมผสานเพื่อศึกษาระดับความชอบหวานและปัจจัยที่เกี่ยวข้องในกลุ่มคนไทยมุสลิมเชื้อสายมลายู อายุ 40–59 ปี ที่อำเภอสายบุรี จังหวัดปัตตานี พนับร่าอ้อยละ 37.3 เลือกระดับความหวาน  $> 10^{\circ}\text{Bx}$  ซึ่งเกินกว่าค่าแนะนำขององค์กรอนามัยโลก ปัจจัยที่สัมพันธ์กับความชอบหวานระดับสูง ได้แก่ อาชีพที่ใช้แรงงาน และการรับรู้ความชอบหวานของตน ข้อมูลเชิงคุณภาพที่ให้เห็นอิทธิพลจากความคุ้นชินในวัยเด็ก ความเห็นอยล้า บริบททางครอบครัวและวัฒนธรรม เช่น การถือศีลอด งานบุญ และการเลี้ยงแขก สะท้อนว่า�้ำตาลเป็นทั้งอาหารและสัญลักษณ์ทางวัฒนธรรม การส่งเสริมให้ลดหวาน ควรดำเนินการในระดับบุคคล ครอบครัว และชุมชน โดยคำนึงถึงบริบททางวัฒนธรรม

## กิตติกรรมประกาศ

รายงานวิจัยนี้ได้รับทุนสนับสนุนจาก กองทุนวิจัย คณฑ์ทั่วไปแพทยศาสตร์ และบัณฑิตวิทยาลัย มหาวิทยาลัยสงขลานครินทร์ เครือข่ายเด็กไทยไม่กินหวานและสำนักงานกองทุนสนับสนุนการสร้างเสริมสุขภาพ

### การขัดกันแห่งผลประโยชน์ (Conflict of interest)

ผู้เขียนขอเปิดเผยว่า ไม่ได้รับการสนับสนุนทางการเงินใด และผลประโยชน์ทางอ้อมจากหน่วยงานใด และไม่มีผลประโยชน์ทับซ้อน ที่เกี่ยวข้องกับการวิจัย การนำเสนอและการเขียนบทความฉบับนี้

## เอกสารอ้างอิง

1. Mojett J, Christ-Hazelhof E, Heidema J. Taste perception with age: pleasantness and its relationships with threshold sensitivity and supra-threshold intensity of five taste qualities. *Food Qual Prefer* 2005;16(5):413-23.
2. Venditti C, Musa-Veloso K, Lee HY, Poon T, Mak A, Darch M, et al. Determinants of sweetness preference: a scoping review of human studies. *Nutrients* 2020;12(3):718
3. Jamel H, Sheiham A, Cowell C, Watt R. Taste preference for sweetness in urban and rural populations in Iraq. *J Dent Res* 1996;75(11):1879-84.
4. Connolly L, Coveleskie K, Kilpatrick L, Labus J, Ebrat B, Stains J, et al. Differences in brain responses between lean and obese women to a sweetened drink. *Neurogastroenterol Motil* 2013;25(7):579-e460.
5. Singh SB, Sharma A, Yadav D, Verma S, Srivastava D, Sharma K, et al. High-altitude effects on human taste intensity and hedonics. *Aviat Space Environ Med* 1997;68(12):1123-8.
6. Baharuddin A, Sharifudin M. The impact of geographical location on taste sensitivity and preference. *Int Food Res J* 2015;22(2):731-738.
7. Bertino M, Beauchamp GK, Jen K-LC. Rated taste perception in two cultural groups. *Chemical Senses* 1983;8(1):3-15.
8. Sorokowska A, Pellegrino R, Butovskaya M, Marczak M, Niemczyk A, Huanca T, et al. Dietary customs and food availability shape the preferences for basic tastes: A cross-cultural study among Polish, Tsimane' and Hadza societies. *Appetite* 2017;116:291-6.
9. Liem DG, de Graaf C. Sweet and sour preferences in young children and adults: role of repeated exposure. *Physiol Behav* 2004;83(3):421-9.
10. FDI World Dental Federation. Sugars and dental caries. A practical guide to reduce sugars consumption and curb the epidemic of dental caries. Geneva: FDI World Dental Federation; 2016.
11. World Health Organization. The WHO Guideline: Sugars Intake for Adults and Children. Geneva: World Health Organization; 2015.
12. Thai Health Promotion Foundation. Trend of reduced sweet consumption is gaining momentum, but Thais still exceed the recommended level fourfold [Internet]. Bangkok: [cited 2025 Aug 28]. Available from: <https://resourcecenter.thaihealth.or.th/content/5711>
13. Ruangrit R, Malathum P, Prapaipanit W. Perception of fasting and self-care behaviors among Thai Muslims with type 2 diabetes during Ramadan. *Rama Nurs J* 2012;18(2):207-217.
14. Peduzzi P, Concato J, Kemper E, Holford TR, Feinstein AR. A simulation study of the number of events per variable in logistic regression analysis. *J Clin Epidemiol* 1996;49(12):1373-9.
15. Ashi H, Lara-Capi C, Campus G, Klingberg G, Lingström P. Sweet taste perception and dental caries in 13-to 15-year-olds: a multicenter cross-sectional study. *Caries Res* 2017;51(4):443-50.
16. Steiner JE, Sgan-Cohen HD, Nahas J. Sweet preference and dental caries among Bedouin youth in Israel. *Community Dent Oral Epidemiol* 1984;12(6):386-9.

17. Neomics. Understanding Brix: a unit for measuring sugar content and sweetness in liquids [Internet]. [place unknown] : Neomics; [cited 2025 Aug 29]. Available from: <https://www.neomics.co.th/sweetness/what-is-brix.html>
18. Nima R, Balthip K, Suthirawut P. Experiences of obesity management among Muslim women. *Songklanagarind J Nurs* 2015;35(1):43-58.
19. Moynihan P, Makino Y, Petersen PE, Ogawa H. Implications of WHO Guideline on Sugars for dental health professionals. *Community Dent Oral Epidemiol* 2018;46(1):1-7.
20. Rattanchueak S, Sirikulchayanon C. Knowledge review on sweetness. Bangkok: Dental Health Division, Department of Health, Ministry of Public Health; 2006. Thai.
21. Jilani H, Pohlabeln H, Henuau S, Eiben G, Hunsberger M, Moreno L, et al. Relative Validity of a Food and Beverage Preference Questionnaire to Characterize Taste Phenotypes in Children Adolescents and Adults. *Nutrients* 2019;27;11(7):1453.
22. Mela DJ, Risso D. Does sweetness exposure drive ‘sweet tooth’? *Br J Nutr* 2024;131(11):1934-44.
23. Pairoj Viriyajaree. Sensory Evaluation. Chiang Mai: Chiang Mai University; 2018. 570 p. ISBN 978-616-398-325-1.
24. Chomkorn J, Sitthichai S, Kanjanaporn T, Thipawan K. Food consumption behavior of people in Ratanaphan Subdistrict, Yaring District, Pattani Province. *Chalermkarnchana Academic Journal* 2018;5(2):108–118.

